Compensated phase method of current for reducing torque ripple of multi-degree of freedom surfaced permanent-magnet motor

Author(s):  
Dong-Woo Kang ◽  
Sung-Chul Go ◽  
Sung-Hong Won ◽  
Hyung-Woo Lee ◽  
Ju Lee
Author(s):  
Dinh Hai Linh

In this paper, a type interior permanent magnet synchronous motor designs is proposed for sport scooter application to improve constant torque wide speed performance. Interior Permanent Magnet machines are widely used in automotive applications for their wide-speed range operation and low maintenance cost. An existing permanent magnet motor (commercial QS Motor) is 3 kW-3000 rpm. In order to improve torque and power in wide speed range, a IPM electric motor 5.5 kW -5000 rpm can run up to 100 km/h: An Step-Skewing Interior Permanent Magnet motor alternatives is designed and optimized in detail with optimal magnetic segment V shape. The electromagnetic charateristics of Interior Permanent Magnet motors with V shape are compared with the reference Surface Permanent Magnet motor for the same geometry parameter requirements. Detailed loss and efficiency result is also analyzed at rate and maximum speeds. A prototype motor is manufactured, and initial experimental tests are performed. Detailed comparison between Finite Element Analysis and test data are also presented. It is shown that it is possible to have an optimized Interior Permanent Magnet motor for such high-speed traction application. This paper will figure out optimal angle of magnetic V shape for maximum torque and minimum torque ripple.


2012 ◽  
Vol 48 (11) ◽  
pp. 4654-4657 ◽  
Author(s):  
H. J. Lee ◽  
H. J. Park ◽  
G. H. Ryu ◽  
S. Y. Oh ◽  
J. Lee

2012 ◽  
Vol 433-440 ◽  
pp. 4201-4206
Author(s):  
Yue Jun An ◽  
Wen Qiang Zhao ◽  
Li Ping Xue ◽  
Hong Liang Wen ◽  
Guo Ming Liu

Cogging torque is one of the most important parameters of permanent magnet motors, which causes torque ripple, vibration and noise. This paper describes the mechanism of cogging torque, introduces several methods of reducing cogging torque and points out the advantage of novel magnet arrayed permanent magnet motor in reducing cogging torque. Ansoft software is used to build the simulation of conventional surface-type permanent magnet motor and novel magnet arrayed permanent magnet motor and to calculate their cogging torque. a cogging torque testing system which included the angle sensor, permanent magnet motor, torque wrenches and other components are tested two different structures motors’ cogging torque .The experimental result is consistent with the simulation results, it shows that the method of novel magnet arrayed permanent magnet motor reducing cogging torque is correct. The new method compare with the same specification on the surface of permanent magnet motor can reduce more cogging torque.


Author(s):  
Hong-Seok Ko ◽  
Kwang-Joon Kim

Abstract The purpose of this paper is to characterize electromagnetic excitation forces in an IPM (Interior Permanent Magnet) motor and to analyze their effects on noise and vibration. To do this, the electromagnetic excitation forces are classified into three parts and contribution of each to the noise and vibration is investigated. The first is cogging torque; in order to overcome drawbacks of finite element method in the initial design stage, an analytical method is proposed. The second is electrical torque ripple due to current harmonics; a simple equation for characterizing the current harmonics with respect to the electrical torque ripple is developed. The third is the excitation force related to distribution of electromagnetic forces in air-gap; existence of this force is understood by finite element method. The influence of the electromagnetic forces on the noise and vibration is investigated by doing modal analysis and operational deflection shape analysis.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2533 ◽  
Author(s):  
Zheng Li ◽  
Xuze Yu ◽  
Zengtao Xue ◽  
Hexu Sun

This paper proposes a novel layered permanent magnet motor (N-LPM), which is based on a three-degree-of-freedom (3-DOF) permanent magnet motor. Compared with the former, the improved N-LPM air gap magnetic density, torque and structure stability have been significantly improved. The proposed N-LPM has three layers of stator along the axis direction, and each layer of stator has three-phase winding. In order to calculate the magnetic field and torque distribution of the N-LPM, an analytical method (AM) is proposed. For performance verification and accurate calculation, finite-element analysis (FEA) is adopted. The two kinds of motors before and after the improvement are compared, and their magnetic field, torque and stability are analyzed. The optimization rate is defined to evaluate the performance of the motor before and after improvement. The results show that the radial flux density, rotation torque, deflection torque and the volume optimization rate of the permanent magnet of the improved motor are 80%, 25%, 50% and 54.72% respectively, and the comprehensive performance is improved significantly.


Sign in / Sign up

Export Citation Format

Share Document