The Continuum Mechanics of Soliton Collisions

Author(s):  
Oliver Melchert ◽  
Stephanie Willms ◽  
Ihar Babushkin ◽  
Bernhard Roth ◽  
Gunter Steinmeyer ◽  
...  
2000 ◽  
Author(s):  
Hiroshi Yamada ◽  
Tohru Takemasa ◽  
Takami Yamaguchi

Abstract To elucidate the orientation of stress fibers in a cultured endothelial cell under cyclic stretch, we hypothesized that a stress fiber aligns so as to minimize the summation of its length change under cyclic stretch, and that there is a limit in the sensitivity of cellular response to the mechanical stimulus. Results from numerical simulations based on the continuum mechanics describe the experimental observations under uniaxial stretch well. They give us an insight to the biological phenomenon of the orientation in stress fibers under biaxial stretch from the viewpoint of mechanical engineering.


1980 ◽  
Vol 102 (2) ◽  
pp. 153-164 ◽  
Author(s):  
M. Godet ◽  
D. Play ◽  
D. Berthe

This paper attempts to give a unified treatment of experiments obtained with solid, liquid and boundary lubricants, different plastics, high temperature steels and elastomers. The argument is centered around third body role, load-carrying capacity, transport and continuum mechanics. This study suggests that an extension to general tribology of the continuum approach used in full film lubrication could be profitable.


Author(s):  
M. Rezaee ◽  
H. Fekrmandi

Carbon nanotubes (CNTs) are expected to have significant impact on several emerging nanoelectromechanical (NEMS) applications. Vigorous understanding of the dynamic behavior of CNTs is essential for designing novel nanodevices. Recent literature show an increased utilization of models based on elastic continuum mechanics theories for studying the vibration behavior of CNTs. The importance of the continuum models stems from two points; (i) continuum simulations consume much less computational effort than the molecular dynamics simulations, and (ii) predicting nanostructures behavior through continuum simulation is much cheaper than studying their behavior through experimental verification. In numerous recent papers, CNTs were assumed to behave as perfectly straight beams or straight cylindrical shells. However, images taken by transmission electron microscopes for CNTs show that these tiny structures are not usually straight, but rather have certain degree of curvature or waviness along the nanotubes length. The curved morphology is due to process-induced waviness during manufacturing processes, in addition to mechanical properties such as low bending stiffness and large aspect ratio. In this study the free nonlinear oscillations of wavy embedded multi-wall carbon nanotubes (MWCNTs) are investigated. The problem is formulated on the basis of the continuum mechanics theory and the waviness of the MWCNTs is modeled as a sinusoidal curve. The governing equation of motion is derived by using the Hamilton’s principle. The Galerkin approach was utilized to reduce the equation of motion to a second order nonlinear differential equation which involves a quadratic nonlinear term due to the curved geometry of the beam, and a cubic nonlinear term due to the stretching effect. The system response has been obtained using the incremental harmonic balanced method (IHBM). Using this method, the iterative relations describing the interaction between the amplitude and the frequency for the single-wall nanotube and double-wall nanotube are obtained. Also, the influence of the waviness, elastic medium and van der Waals forces on frequency-response curves is researched. Results present some useful information to analyze CNT’s nonlinear dynamic behavior.


Author(s):  
Wei Huang ◽  
Robert L. Jackson

Surface asperities can range widely in size. Therefore it is important to characterize the effect of size and scale on the contact mechanics. This work presents a molecular model of asperity contact in order to characterize small scale asperity contact. The model is also compared to existing continuum mechanics based models developed originally by Hertz for elastic contact and later expanded by others to include plasticity. It appears that the predictions can be related to each other and that the continuum material properties can be related to the properties describing the molecular forces.


2012 ◽  
Vol 182-183 ◽  
pp. 1194-1199
Author(s):  
Lei Zheng ◽  
Zheng Zhong Shen

Numerical manifold method (NMM) is based on the blocky theory which absorbed the advantages of finite element method based on the continuum mechanics, discontinuous deformation analysis method based on the non-continuum mechanics and analytic method. According to the finite covering technology of modern manifold analysis method, uniform solving format on continuous-non-continuous problems is established by taking the continuous and discontinuous cover function which can be used for the numerical simulation of large deformation and continuous-discontinuous deformation. The calculation program is worked out based on the method above and it is applied to the actual project.


2008 ◽  
Vol 08 (02) ◽  
pp. 357-366 ◽  
Author(s):  
Q. WANG ◽  
V. K. VARADAN ◽  
Y. XIANG ◽  
Q. K. HAN ◽  
B. C. WEN

This technical note is concerned with the buckling of single-walled carbon nanotubes with one atomic vacancy. An elastic beam theory is developed to predict the buckling strain of defective CNTs, and the strain prediction via the continuum mechanics model is verified from comparison studies by molecular dynamics simulations. The results demonstrate the effectiveness of the continuum mechanics theory for longer CNTs. In addition, a local kink is revealed in the morphology of the buckling of shorter defective CNTs via molecular dynamics.


1993 ◽  
Vol 48 (8-9) ◽  
pp. 883-894
Author(s):  
Bernward Stuke

Abstract For a class of systems obeying Euler's equation of motion the existence of a quantity to be named "proper mechanical energy" (PME) is shown which, together with internal energy, results in a quantity to be named "proper energy" (PE), which is conserved under conditions of time-dependent potentials. The appertaining formal structure for the continuum mechanics of such systems is the counterpart to Gibbs' fundamental equation of thermodynamics and the relations deriving therefrom. Euler's equation of motion, in particular, corresponds to the Gibbs-Duhem equation of thermodynamics. The transport properties of PME and PE are different from those of the corresponding conventional energies. The results point to a general structure of this kind for continuum mechanics.


Sign in / Sign up

Export Citation Format

Share Document