A Minimum Distance Bound for 1-Generator Quasi-Cyclic Codes

Author(s):  
Isaac Woungang ◽  
Sudip Misra ◽  
Alireza Sadeghian ◽  
Alexander Ferworn
2021 ◽  
Author(s):  
Jihao Fan ◽  
Jun Li ◽  
Ya Wang ◽  
Yonghui Li ◽  
Min-Hsiu Hsieh ◽  
...  

Abstract We utilize a concatenation scheme to construct new families of quantum error correction codes that include the Bacon-Shor codes. We show that our scheme can lead to asymptotically good quantum codes while Bacon-Shor codes cannot. Further, the concatenation scheme allows us to derive quantum LDPC codes of distance Ω(N2/3/loglogN) which can improve Hastings’s recent result [arXiv:2102.10030] by a polylogarithmic factor. Moreover, assisted by the Evra-Kaufman- Zémor distance balancing construction, our concatenation scheme can yield quantum LDPC codes with non-vanishing code rates and better minimum distance upper bound than the hypergraph product quantum LDPC codes. Finally, we derive a family of fast encodable and decodable quan- tum concatenated codes with parameters Q = [[N,Ω(√N),Ω(√N)]] and they also belong to the Bacon-Shor codes. We show that Q can be encoded very efficiently by circuits of size O(N) and depth O(√N), and can correct any adversarial error of weight up to half the minimum distance bound in O(√N) time. To the best of our knowledge, they are the most powerful quantum codes for correcting so many adversarial errors in sublinear time by far.


2011 ◽  
Vol 03 (02) ◽  
pp. 223-243
Author(s):  
CHRISTOS KOUKOUVINOS ◽  
DIMITRIS E. SIMOS

In this paper, one-generator binary quasi-cyclic (QC) codes are explored by statistical tools derived from design of experiments. A connection between a structured cyclic class of statistical designs, k-circulant supersaturated designs and QC codes is given. The mathematical structure of the later codes is explored and a link between complementary dual binary QC codes and E(s2)-optimal k-circulant supersaturated designs is established. Moreover, binary QC codes of rate 1/3, 1/4, 1/5, 1/6 and 1/7 are found by utilizing a genetic algorithm. Our approach is based on a search for good or best codes that attain the current best-known lower bounds on the minimum distance of linear codes, formulated as a combinatorial optimization problem. Surveying previous results, it is shown, that our codes reach the current best-known lower bounds on the minimum distance of linear codes with the same parameters.


2018 ◽  
Vol 173 ◽  
pp. 03095
Author(s):  
Li Xiuli ◽  
Zhao Pengcheng ◽  
Zhou Dangsheng

In this paper, rate 1/p q-ary systematic quasi-cyclic codes are constructed based on matroid theory. The relationship between the generator matrix and minimum distance d is derived. Examples and algorithm are presented.


2012 ◽  
Vol 26 (4) ◽  
pp. 1781-1796 ◽  
Author(s):  
Cem Güneri̇ ◽  
Ferruh Özbudak

Filomat ◽  
2019 ◽  
Vol 33 (8) ◽  
pp. 2237-2248 ◽  
Author(s):  
Habibul Islam ◽  
Om Prakash

In this paper, we study (1 + 2u + 2v)-constacyclic and skew (1 + 2u + 2v)-constacyclic codes over the ring Z4 + uZ4 + vZ4 + uvZ4 where u2 = v2 = 0,uv = vu. We define some new Gray maps and show that the Gray images of (1 + 2u + 2v)-constacyclic and skew (1 + 2u + 2v)-constacyclic codes are cyclic, quasi-cyclic and permutation equivalent to quasi-cyclic codes over Z4. Further, we determine the structure of (1 + 2u + 2v)-constacyclic codes of odd length n.


Sign in / Sign up

Export Citation Format

Share Document