Research of Visualization Monitoring Technology Based on Internet of Things in Discrete Manufacturing Process

Author(s):  
Min Qiang ◽  
Ding Yu-feng ◽  
Xiao Ting ◽  
Wang Shun-li
1999 ◽  
Author(s):  
Craig Schlenoff ◽  
Mihai Ciocoiu ◽  
Don Libes ◽  
Michael Gruninger

Abstract In all types of communication, the ability to share information is often hindered because the meaning of information can be drastically affected by the context in which it is viewed and interpreted. This is especially true in manufacturing because of the growing complexity of manufacturing information and the increasing need to exchange this information among various software applications. Different manufacturing functions may use different terms to mean the exact same concept or use the exact same term to mean very different concepts. Often, the loosely defined natural language definitions associated with the terms contain so much ambiguity that they do not make the differences evident and/or do not provide enough information to resolve the differences. A solution to this problem is the development of a taxonomy, or ontology, of manufacturing concepts and terms along with their respective formal and unambiguous definitions. This paper focuses on the Process Specification Language (PSL) effort at the National Institute of Standards and Technology whose goal is to identify, formally define, and structure the semantic concepts intrinsic to the capture and exchange of discrete manufacturing process information. Specifically, it describes the results of the first pilot implementation, where PSL was successfully used as an interlingua to exchange manufacturing process information between the IDEF3-based ProCAP1 process modeling tool and the C++ based ILOG Scheduler.


Author(s):  
Bin Lin

The Internet of Things is another information technology revolution and industrial wave after computer, Internet and mobile communication. It is becoming a key foundation and an important engine for the green, intelligent and sustainable development of economic society. The new networked intelligent production mode characterized by the integration innovation of the Internet of Things is shaping the core competitiveness of the future manufacturing industry. The application of sensor network data positioning and monitoring technology based on the Internet of Things in industry, power and other industries is a hot field for the development of the Internet of Things. Sensor network processing and industrial applications are becoming increasingly complex, and new features have appeared in the sensor network scale and infrastructure in these fields. Therefore, the Internet of Things perception data processing has become a research hotspot in the deep integration process between industry and the Internet of Things. This paper deeply analyzes and summarizes the characteristics of sensor network perception data under the new trend of the Internet of Things as well as the research on location monitoring technology, and makes in-depth exploration from the release and location monitoring of sensor network perception data of the Internet of Things. Sensor network technology integrated sensor technology, micro-electromechanical system technology, wireless communication technology, embedded computing technology and distributed information processing technology in one, with easy layout, easy control, low power consumption, flexible communication, low cost and other characteristics. Therefore, based on the release and location monitoring technologies of sensor network data based on the Internet of Things in different applications, this paper studies the corresponding networking technologies, energy management, data management and fusion methods. Standardization system in wireless sensor network low cost, and convenient data management needs, design the iot oriented middleware, and develops the software and hardware system, the application demonstration, the results show that the design of wireless sensor network based on iot data monitoring and positioning technology is better meet the application requirements, fine convenient integration of software and hardware, and standardized requirements and suitable for promotion.


Author(s):  
Rinki Sharma

Over the years, the industrial and manufacturing applications have become highly connected and automated. The incorporation of interconnected smart sensors, actuators, instruments, and other devices helps in establishing higher reliability and efficiency in the industrial and manufacturing process. This has given rise to the industrial internet of things (IIoT). Since IIoT components are scattered all over the network, real-time authenticity of the IIoT activities becomes essential. Blockchain technology is being considered by the researchers as the decentralized architecture to securely process the IIoT transactions. However, there are challenges involved in effective implementation of blockchain in IIoT. This chapter presents the importance of blockchain in IIoT paradigm, its role in different IIoT applications, challenges involved, possible solutions to overcome the challenges and open research issues.


2018 ◽  
Vol 188 ◽  
pp. 05006
Author(s):  
Christos Anagnostopoulos ◽  
Christos Alexakos ◽  
Apostolos Fournaris ◽  
Christos Koulamas ◽  
Athanasios Kalogeras

The manufacturing environment is characterized by increased complexity with different devices, systems and applications that need to interoperate, while residing at different layers of the classical industrial environment hierarchy. The introduction of the Industrial Internet of Things with increasingly smarter devices drives towards flatter hierarchies. This paper deals with an architecture for integration of IIoT devices in the manufacturing environment utilizing a Multi Agent System to this end. This extended architecture is utilised so as to perform failure detection of both IIoT devices and manufacturing resources, and react by altering the manufacturing process either automatically or semi-automatically.


Sign in / Sign up

Export Citation Format

Share Document