High-current vacuum arc: The relationship between anode phenomena and the average opening velocity of vacuum interrupter

Author(s):  
Guowei Kong ◽  
Zhiyuan Liu ◽  
Dong Wang ◽  
Mingzhe Rong
2017 ◽  
Vol 4 (3) ◽  
pp. 249-252
Author(s):  
A. Khakpour ◽  
R. Methling ◽  
St. Franke ◽  
S. Gortschakow ◽  
D. Uhrlandt

A vacuum interrupter reaches its interruption limit once high-current anode phenomena occur. High-current anode modes lead to an increase of the anode surface temperature and an increased generation of metal vapor, which may result in a weakening of the dielectric recovery strength after current zero. In this work, different discharge modes in a vacuum arc for AC 50 Hz including diffuse, footpoint, anode spot type 1 and type 2, and anode plume are investigated. Electrodes made of CuCr7525 with diameter of 10 mm are used. The final gap length is about 20 mm. Time and space resolved optical emission spectroscopy is used to examine the temporal and spatial distribution of atomic and ionic copper lines. The distribution of atomic and ionic lines parallel and perpendicular to the anode surface is investigated. Radiator density is also determined for CuI, CuII, and CuIII near the anode surface.


1977 ◽  
Vol 48 (5) ◽  
pp. 1885-1889 ◽  
Author(s):  
Raymond L. Boxman
Keyword(s):  

1992 ◽  
Vol 62 (5) ◽  
pp. 525-530
Author(s):  
G. A. Dyuzhev ◽  
S. M. Shkol'nik

1997 ◽  
Vol 471 ◽  
Author(s):  
W. Eccleston

ABSTRACTThe drift of electrons in the channels of Thin Film Transistors is analysed for discrete grains separated by grain boundaries containing amorphous silicon. The model provides the relationship channel mobility and grain size. The relationship between drain current and the terminal voltages is also predicted. The model relates to normal high current region of transistor operation.


1990 ◽  
Vol 61 (12) ◽  
pp. 3775-3782 ◽  
Author(s):  
Hiroshi Shiraishi ◽  
Ian G. Brown

Sign in / Sign up

Export Citation Format

Share Document