Breast Cancer Detection Using K-Nearest Neighbor Machine Learning Algorithm

Author(s):  
Moh'd Rasoul Al-Hadidi ◽  
Abdulsalam Alarabeyyat ◽  
Mohannad Alhanahnah
2020 ◽  
Vol 6 (3) ◽  
pp. 26-31
Author(s):  
Shashidhar R ◽  
Arunakumari B N ◽  
Naziya Farheen H S ◽  
Puneeth S B ◽  
Santhosh Kumar R ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Xueyuan Huang ◽  
Yongjun Wang ◽  
Bingyu Chen ◽  
Yuanshuai Huang ◽  
Xinhua Wang ◽  
...  

Background: Predicting the perioperative requirement for red blood cells (RBCs) transfusion in patients with the pelvic fracture may be challenging. In this study, we constructed a perioperative RBCs transfusion predictive model (ternary classifications) based on a machine learning algorithm.Materials and Methods: This study included perioperative adult patients with pelvic trauma hospitalized across six Chinese centers between September 2012 and June 2019. An extreme gradient boosting (XGBoost) algorithm was used to predict the need for perioperative RBCs transfusion, with data being split into training test (80%), which was subjected to 5-fold cross-validation, and test set (20%). The ability of the predictive transfusion model was compared with blood preparation based on surgeons' experience and other predictive models, including random forest, gradient boosting decision tree, K-nearest neighbor, logistic regression, and Gaussian naïve Bayes classifier models. Data of 33 patients from one of the hospitals were prospectively collected for model validation.Results: Among 510 patients, 192 (37.65%) have not received any perioperative RBCs transfusion, 127 (24.90%) received less-transfusion (RBCs < 4U), and 191 (37.45%) received more-transfusion (RBCs ≥ 4U). Machine learning-based transfusion predictive model produced the best performance with the accuracy of 83.34%, and Kappa coefficient of 0.7967 compared with other methods (blood preparation based on surgeons' experience with the accuracy of 65.94%, and Kappa coefficient of 0.5704; the random forest method with an accuracy of 82.35%, and Kappa coefficient of 0.7858; the gradient boosting decision tree with an accuracy of 79.41%, and Kappa coefficient of 0.7742; the K-nearest neighbor with an accuracy of 53.92%, and Kappa coefficient of 0.3341). In the prospective dataset, it also had a food performance with accuracy 81.82%.Conclusion: This multicenter retrospective cohort study described the construction of an accurate model that could predict perioperative RBCs transfusion in patients with pelvic fractures.


2018 ◽  
Vol 1 (2) ◽  
pp. 24-32
Author(s):  
Lamiaa Abd Habeeb

In this paper, we designed a system that extract citizens opinion about Iraqis government and Iraqis politicians through analyze their comments from Facebook (social media network). Since the data is random and contains noise, we cleaned the text and builds a stemmer to stem the words as much as possible, cleaning and stemming reduced the number of vocabulary from 28968 to 17083, these reductions caused reduction in memory size from 382858 bytes to 197102 bytes. Generally, there are two approaches to extract users opinion; namely, lexicon-based approach and machine learning approach. In our work, machine learning approach is applied with three machine learning algorithm which are; Naïve base, K-Nearest neighbor and AdaBoost ensemble machine learning algorithm. For Naïve base, we apply two models; Bernoulli and Multinomial models. We found that, Naïve base with Multinomial models give highest accuracy.


2020 ◽  
Vol 5 (2) ◽  
pp. 57
Author(s):  
Novia Hasdyna ◽  
Rozzi Kesuma Dinata

K-Nearest Neighbor (K-NN) is a machine learning algorithm that functions to classify data. This study aims to measure the performance of K-NN algorithm by using Matthew Correlation Coefficient (MCC). The data that used in this study are the ornamental fish which consisting of 3 classes named Premium, Medium, and Low. The analysis results of the Matthew Correlation Coefficient on K-NN using Euclidean Distance obtained the highest MCC value in Medium class which is 0.786542. The second highest MCC value is in Premium class which is 0.567434. The lowest MCC value is in Low class which is 0.435269. Overall, the MCC values is statistically which is 0,596415.


Sign in / Sign up

Export Citation Format

Share Document