Wavelet Analysis Based Classification of Emotion from EEG Signal

Author(s):  
Md. Rabiul Islam ◽  
Mohiuddin Ahmad
Keyword(s):  
1997 ◽  
Vol 36 (04/05) ◽  
pp. 356-359 ◽  
Author(s):  
M. Sekine ◽  
M. Ogawa ◽  
T. Togawa ◽  
Y. Fukui ◽  
T. Tamura

Abstract:In this study we have attempted to classify the acceleration signal, while walking both at horizontal level, and upstairs and downstairs, using wavelet analysis. The acceleration signal close to the body’s center of gravity was measured while the subjects walked in a corridor and up and down a stairway. The data for four steps were analyzed and the Daubecies 3 wavelet transform was applied to the sequential data. The variables to be discriminated were the waveforms related to levels -4 and -5. The sum of the square values at each step was compared at levels -4 and -5. Downstairs walking could be discriminated from other types of walking, showing the largest value for level -5. Walking at horizontal level was compared with upstairs walking for level -4. It was possible to discriminate the continuous dynamic responses to walking by the wavelet transform.


2021 ◽  
Vol 11 (5) ◽  
pp. 668
Author(s):  
Sani Saminu ◽  
Guizhi Xu ◽  
Zhang Shuai ◽  
Isselmou Abd El Kader ◽  
Adamu Halilu Jabire ◽  
...  

The benefits of early detection and classification of epileptic seizures in analysis, monitoring and diagnosis for the realization and actualization of computer-aided devices and recent internet of medical things (IoMT) devices can never be overemphasized. The success of these applications largely depends on the accuracy of the detection and classification techniques employed. Several methods have been investigated, proposed and developed over the years. This paper investigates various seizure detection algorithms and classifications in the last decade, including conventional techniques and recent deep learning algorithms. It also discusses epileptiform detection as one of the steps towards advanced diagnoses of disorders of consciousness (DOCs) and their understanding. A performance comparison was carried out on the different algorithms investigated, and their advantages and disadvantages were explored. From our survey, much attention has recently been paid to exploring the efficacy of deep learning algorithms in seizure detection and classification, which are employed in other areas such as image processing and classification. Hybrid deep learning has also been explored, with CNN-RNN being the most popular.


2021 ◽  
Vol 20 ◽  
pp. 199-206
Author(s):  
Seda Postalcioglu

This study focused on the classification of EEG signal. The study aims to make a classification with fast response and high-performance rate. Thus, it could be possible for real-time control applications as Brain-Computer Interface (BCI) systems. The feature vector is created by Wavelet transform and statistical calculations. It is trained and tested with a neural network. The db4 wavelet is used in the study. Pwelch, skewness, kurtosis, band power, median, standard deviation, min, max, energy, entropy are used to make the wavelet coefficients meaningful. The performance is achieved as 99.414% with the running time of 0.0209 seconds


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Huiping Jiang ◽  
Demeng Wu ◽  
Rui Jiao ◽  
Zongnan Wang

Electroencephalography (EEG) is the measurement of neuronal activity in different areas of the brain through the use of electrodes. As EEG signal technology has matured over the years, it has been applied in various methods to EEG emotion recognition, most significantly including the use of convolutional neural network (CNN). However, these methods are still not ideal, and shortcomings have been found in the results of some models of EEG feature extraction and classification. In this study, two CNN models were selected for the extraction and classification of preprocessed data, namely, common spatial patterns- (CSP-) CNN and wavelet transform- (WT-) CNN. Using the CSP-CNN, we first used the common space model to reduce dimensionality and then applied the CNN directly to extract and classify the features of the EEG; while, with the WT-CNN model, we used the wavelet transform to extract EEG features, thereafter applying the CNN for classification. The EEG classification results of these two classification models were subsequently analyzed and compared, with the average classification accuracy of the CSP-CNN model found to be 80.56%, and the average classification accuracy of the WT-CNN model measured to 86.90%. Thus, the findings of this study show that the average classification accuracy of the WT-CNN model was 6.34% higher than that of the CSP-CNN.


2019 ◽  
Vol 157 ◽  
pp. 552-559 ◽  
Author(s):  
Annisa’ Hilmi Masruroh ◽  
Elly Matul Imah ◽  
Endah Rahmawati
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document