Effects of Process Parameters and Isothermal Fatigue Cycling on Electromechanical Properties of Screen-printed Interconnect on Nonwovens for Wearable Electronics

Author(s):  
B. Garakani ◽  
K. U. S. Somarathna ◽  
G.S. Khinda ◽  
E. Enakerakpo ◽  
M. Alhendi ◽  
...  
2019 ◽  
Vol 50 (3) ◽  
pp. 333-345 ◽  
Author(s):  
Danmei Sun ◽  
Meixuan Chen ◽  
Symon Podilchak ◽  
Apostolos Georgiadis ◽  
Qassim S Abdullahi ◽  
...  

Smart and interactive textiles have been attracted great attention in recent years. This research explored three different techniques and processes in developing textile-based conductive coils that are able to embed in a garment layer. Coils made through embroidery and screen printing have good dimensional stability, although the resistance of screen printed coil is too high due to the low conductivity of the print ink. Laser cut coil provided the best electrical conductivity; however, the disadvantage of this method is that it is very difficult to keep the completed coil to the predetermined shape and dimension. The tested results show that an electromagnetic field has been generated between the textile-based conductive coil and an external coil that is directly powered by electricity. The magnetic field and electric field worked simultaneously to complete the wireless charging process.


Author(s):  
Jiang Zhao ◽  
Jiahao Gui ◽  
Jinsong Luo ◽  
Jing Gao ◽  
Caidong Zheng ◽  
...  

Abstract Graphene-based pressure sensors have received extensive attention in wearable devices. However, reliable, low-cost, and large-scale preparation of structurally stable graphene electrodes for flexible pressure sensors is still a challenge. Herein, for the first time, laser-induced graphene (LIG) powder are prepared into screen printing ink, and shape-controllable LIG patterned electrodes can be obtained on various substrates using a facile screen printing process, and a novel asymmetric pressure sensor composed of the resulting screen-printed LIG electrodes has been developed. Benefit from the 3D porous structure of LIG, the as-prepared flexible LIG screen-printed asymmetric pressure sensor has super sensing properties with a high sensitivity of 1.86 kPa−1, low detection limit of about 3.4 Pa, short response time, and long cycle durability. Such excellent sensing performances give our flexible asymmetric LIG screen-printed pressure sensor the ability to realize real-time detection of tiny body physiological movements (such as wrist pulse and pronunciation action). Besides, the integrated sensor array has a multi-touch function. This work could stimulate an appropriate approach to designing shape-controllable LIG screen-printed patterned electrodes on various flexible substrates to adapt the specific needs of fulfilling compatibility and modular integration for potential application prospects in wearable electronics.


2013 ◽  
Vol 178 (8) ◽  
pp. 511-519 ◽  
Author(s):  
Kamil Janeczek ◽  
Grażyna Kozioł ◽  
Małgorzata Jakubowska ◽  
Aneta Araźna ◽  
Anna Młożniak ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7606
Author(s):  
Tomasz Raczyński ◽  
Daniel Janczak ◽  
Jerzy Szałapak ◽  
Piotr Walter ◽  
Małgorzata Jakubowska

Wearable electronics are new structures with a wide range of possible applications. This study aims to analyze the effects of hot pressing in thermal transfer of different carbon-based composites as a new application method of screen-printed electronics on textiles. Flexible heaters were screen-printed on polyethylene terephthalate PET foil with composites based on graphene, carbon black, and graphite with different wt.%, measured and then hot pressed to measure and analyze differences. Research showed that the hot pressing process in thermal transfer resulted in decreased electrical resistance, increased power, and higher maximal temperatures. Best results were achieved with composites based on 12 wt.% graphene with sheet resistance lowered by about 40% and increased power by about 110%. This study shows promise for thermal transfer and screen-printing combination as an alternative for creating flexible electronics on textiles.


2019 ◽  
Vol 2019 (1) ◽  
pp. 000139-000146 ◽  
Author(s):  
Behnam Garakani ◽  
K Udara Sandakelum Somarathna ◽  
Darshana L Weerawarne ◽  
Mark D Poliks ◽  
Azar Alizadeh

Abstract Scalable printing of conductor and resistor components has revolutionized the field of flexible electronics by enabling a myriad of low cost highly conformable devices. Flexible electronic devices need to exhibit reliable performance under strenuous mechanical deformations to be adopted in applications such as human and asset monitoring. The reliability of the devices is in turn affected by the microstructure of the materials, manufacturing processes, and conditions of use. In this research, the mechanical behavior and microstructural properties of stretchable silver conductor and stretchable carbon conductor inks on flexible substrate are studied. The test vehicles (such as 4- point probe structures are screen printed on thermoplastic polyurethane (TPU) and cured in a convection oven. The quality of the printed traces including the resolution and thickness profile are measured by Confocal Laser Scanning microscope. The microstructure of the sample including particle/nanoparticles morphology is studied by Scanning Electron Microscopy (SEM). The electrical resistance is measured by 4-point probes method and the sheet resistance of the printed samples is calculated. The mechanical and electrical reliability of the samples are investigated by fatigue-cycling and in-situ measuring of the electrical resistance. In terms of electrical conductivity, the silver printed traces show different behavior compared to the carbon printed samples when exposed to fatigue cycling. The electrical resistance of the printed silver trace increases during the fatigue cycling. Higher extension rate along with higher strain magnitude accelerate the rate of increase in the electrical resistance. The relative electrical resistance of the carbon trace initially drops to 0.7 after 40 cycles and remains constant for the rest of the cycles. The extension rate does not considerably change the electrical resistance of carbon trace. The stability in electrical resistance is crucial in applications where electrical shielding is concerned.


2013 ◽  
Vol 6 (9) ◽  
pp. 2698 ◽  
Author(s):  
Kristy Jost ◽  
Daniel Stenger ◽  
Carlos R. Perez ◽  
John K. McDonough ◽  
Keryn Lian ◽  
...  

Author(s):  
Ulrika Linderhed ◽  
Ioannis Petsagkourakis ◽  
Peter Andersson Ersman ◽  
Valerio Beni ◽  
Klas Tybrandt

Abstract The advent of the Internet of Things and the growing interest in continuous monitoring by wearables have created a need for conformable and stretchable displays. Electrochromic displays (ECDs) are receiving attention as a cost-effective solution for many simple applications. However, stretchable ECDs have yet to be produced in a robust, large scale and cost-efficient manner. Here we develop a process for making fully screen printed stretchable ECDs. By evaluating commercially available inks with respect to electromechanical properties, including electrochromic PEDOT:PSS inks, our process can be directly applied in the manufacturing of stretchable organic electronic devices. The manufactured ECDs retained colour contrast with useful switching times at static strains up to 50 % and strain cycling up to 30 % strain. To further demonstrate the applicability of the technology, double-digit 7-segment ECDs were produced, which could conform to curved surfaces and be mounted onto stretchable fabrics while remaining fully functional. Based on their simplicity, robustness and processability, we believe that low cost printed stretchable ECDs can be easily scaled up and will find many applications within the rapidly growing markets of wearable electronics and the Internet of Things.


Sign in / Sign up

Export Citation Format

Share Document