A novel structure for vector control of a symmetrical six-phase induction machine with three current sensors

Author(s):  
Hamidreza Pairodin Nabi ◽  
Pooya Dadashi ◽  
Abbas Shoulaie
2011 ◽  
Vol 1 (2) ◽  
pp. 23-29
Author(s):  
H. P. Nabi ◽  
P. Dadashi ◽  
A. Shoulaie

Vector control is one of the most popular multiphase induction machine drive methods due to its dynamic performance. Since all phase currents are needed in vector control drive, by increasing phase numbers, the number of required current sensors increases which is one of the disadvantages of vector control in multiphase machine drives. In this paper vector control of a symmetrical six-phase induction machine with a novel configuration is presented. The aforementioned configuration is designed in a simple way that only three current sensors will be needed. Analytical equations are extracted in this paper to show that some of current components which do not contribute in torque production will be eliminated due to the proposed scheme. Simulation and experimental results are provided to verify the benefits of the proposed configuration.


Author(s):  
Ngoc Thuy Pham

This paper presents a novel structure combining the port-controlled Hamiltonian (PCH) and Backstepping (BS) nonlinear control for the vector control of the six-phase induction motor (SPIM). In this new scheme, to improve the outer loop’s robustness, the BS technique using the integral tracking errors action is proposed in the speed and flux controllers design. The advantage of this proposed control law is not to increase the complexity of differential equation resolution due to being not increased system states numbers. To enhance more the performance of SPIM drives (SPIMD), port-controlled Hamiltonian (PCH) scheme is used in the inner current loop controllers. In this proposed PCH current controller, the stabilization of controller is achieved via system passivity. In that, the interconnection and damping matrix functions of PCH system are shaped so that the physical (Hamiltonian) system structure is preserved at the closed loop level and the closed loop energy function is equal to the difference between the physical energy of the system and the energy supplied by the controller. The proposed control design is based on combination PCH and BS techniques improve significantly performance and robustness. The proposed speed control scheme is validated by Matlab-Simulink software.


Author(s):  
Rahma Hammami ◽  
Imène Ben Ameur ◽  
Khaled Jelassi

This article deals with field-oriented control of induction machine squirrel cage. A robust fractional-order controller is applied and investigated to control the induction machine currents isd and isq. The fractional-order gives better fit in regulation operation. For this purpose, this controller form is recommended, especially in industrial systems, thanks to his flexibility, robustness and efficiency to solve complex problems such as electrical parameters changes (i.e. uncertain parameter) caused by the temperature effect. Based on frequency specification and several constraints, the fractional-order controller is designed. The fmincon toolbox optimization is used to adjust ki, kp and α values. In order to show the reliability of the developed controller in the induction machine behavior, several simulation results are carried out and illustrated.


Sign in / Sign up

Export Citation Format

Share Document