Simulation of three-phase induction motor performance during faults

Author(s):  
L. Varatharasa ◽  
S. Kolla
Author(s):  
Mohamed I. Abdelwanis ◽  
Fatallah Selim ◽  
Ragab Abdel-Aziz El-Sehiemy

This paper proposes a sensorless procedure to estimate the induction motor speed and the dependable heat contents of the stator and rotor sides. The proposed procedure is based on the electrical models of a three phase Induction Motor (IM). The motor electrical models for normal and abnormal will be discussed and a technique is introduced for accommodating frequency dependent skin effect of the rotor resistance using a simple proposed speed estimation algorithm. The electrical models are customized from the positive and negative sequence networks. The speed detection is based on the rotor parameters slip dependent. The models are then used to analyze different operating conditions of the motor. Two thermal motor protection schemes are suggested. The first scheme is dependent on the stator side while the other scheme is developed for rotor side. The Matlab software is used for this purpose to emulate efficiently the proposed estimation procedures through a complete motor modeling which is fed from the power grid. Finally, the results provide the motor performance characteristics which involve current, torque, speed and stator/rotor temperature versus time for numerous operating conditions. It is concluded that the proposed sensorless procedure is efficient to protect the induction motors against abnormal starting as well as the overheating on either stator or rotor sides. Also, the proposed sensorless estimation for speed and temperature is reliable for submersible motor applications. The proposed schemes can be considered as costless preventive maintenance procedure.Index Terms: induction motor, slip dependent, sensorless, thermal model, abnormal operating conditions.


Author(s):  
Wenzhong Zhang ◽  
Xutian Zou ◽  
Junfeng Sun

Abstract Shaft is an important part of rotor, whose electromagnetic characteristics have an impact on the performance of the motor, especially when large diameter shaft and thin rotor yoke are adopted in the two-pole induction motor. Taking a 3 kW two-pole three-phase induction motor as an example, the two-dimensional electromagnetic field model of the motor is established by using finite element method. Firstly, by analyzing the difference of current, power factor, loss and magnetic field distribution of the motor with different shafts that are made from ferromagnetic and non-ferromagnetic materials. It is determined that the different magnetic saturation degree of rotor yoke is the key factor affecting the performance of motor when different shaft materials are used. Secondly, it is verified that the traditional analytic design method has the inaccurate design problem of the rotor yoke height due to neglecting the specific electromagnetic characteristics of shaft material. Finally, by comparing the differences of motor performance when several common magnetic shaft materials are used in motor shafts, the advantages of various shaft materials in improving motor performance are found. The presented results give guidelines to selecting shaft materials to improve motor performance.


Sign in / Sign up

Export Citation Format

Share Document