Inverse neurovascular coupling and associated spreading depolarization models for traumatic brain injury

Author(s):  
Kashmira Dey ◽  
Shubhajit Roy Chowdhury
2017 ◽  
Vol 4 (04) ◽  
pp. 1 ◽  
Author(s):  
Hyounguk Jang ◽  
Stanley Huang ◽  
Daniel X. Hammer ◽  
Lin Wang ◽  
Harmain Rafi ◽  
...  

2019 ◽  
Vol 17 (2) ◽  
pp. 151-164
Author(s):  
Yağmur Çetin Taş ◽  
İhsan Solaroğlu ◽  
Yasemin Gürsoy-Özdemir

Lesion growth following acutely injured brain tissue after stroke, subarachnoid hemorrhage and traumatic brain injury is an important issue and a new target area for promising therapeutic interventions. Spreading depolarization or peri-lesion depolarization waves were demonstrated as one of the significant contributors of continued lesion growth. In this short review, we discuss the pathophysiology for SD forming events and try to list findings detected in neurological disorders like migraine, stroke, subarachnoid hemorrhage and traumatic brain injury in both human as well as experimental studies. Pharmacological and non-pharmacological treatment strategies are highlighted and future directions and research limitations are discussed.


2018 ◽  
Author(s):  
Fatemeh Bahari ◽  
Paddy Ssentongo ◽  
Jiayang Liu ◽  
John Kimbugwe ◽  
Carlos Curay ◽  
...  

AbstractSpreading depression is characterized by slow, propagating wave of cellular depolarization (SD) and is wildly associated with migraine, stroke, and traumatic brain injury. Seizures and spreading depression (or spreading depolarization, SD) have long been reported to coincide in acute seizure induction experiments. However, SD has not been observed associated with spotaneous seizures in animal or clinical recordings. Recently, advances in acquisition systems for neurointensive care units have made routine observations of SD possible. In clinical epilepsy, SD has been suggested as a candidate mechanism for migraine/headache like events following seizures as well as for post-ictal generalized suppression. In animal models of epilepsy, seizure-induced brainstem SD has also been demonstrated as a mechanism of sudden unexplained death in epilepsy (SUDEP). The interplay between seizures and SD has also been suggested in computational models, where the two are components of the repetoir of neuronal activity.However, the spatiotemporal dynamics of SD with respect to spontaneous seizures in chronically epileptic brain remains ambigous. We analyzed continuous long-term DC sensitive EEG measurements from two fundamentally different animal models of chronic epilepsy. We found that SD was associated with approximately one-third of all spontaneous seizures in each model. Additionally, SDs participated in the organization of seizure clusters. These findings demonstrate that the underlying dynamic of epileptic events is broader than seizures alone.Significance StatementSpreading depression is characterized by slow, propagating wave of cellular spreading depolarization (SD) and is wildly associated with migraine, stroke, and traumatic brain injury. Although recently the linkage between SD and induced seizures has been recognized, the mechanistic relationship between SD and spontaneous seizures remains poorly understood. Here, we utilized long-term, stable, near-DC measurements of the brain activity in two fundamentally different animal models of epilepsy to investigate the SD-seizure interplay. We found that SD is a frequent phenomenon in the epileptic brain, in these models is associated with more than a third of all seizures, and appears to connect seizures in seizure clusters. Although in one model SD stereotypically propagates out from a single focus in the hippocampus, depression of the field-potentials is observed synchronously across much of the hippocampus. These observations highlight the value of stable DC measurements for accurate understanding of SD and its propagation. We found that spontaneous ictal events that include both seizures and SD are frequent in animal models of epilepsy. These findings suggest that SD could be a valuable target for treatment and control of epilepsy.


2017 ◽  
Vol 11 (1) ◽  
pp. 58-71 ◽  
Author(s):  
Benjamin H. Wing ◽  
Braden J. Tucker ◽  
Alina K. Fong ◽  
Mark D. Allen

Background:Emerging research proposes the imbalance between microvascular supply and metabolic demand as a contributing factor in the pathophysiology of mild traumatic brain injury. Prolonged effects on the dysregulation of neurovascular coupling may explain persistent symptomatic models such as Post-Concussion Syndrome.Objective:Increased knowledge of what we refer to as neurovascular uncoupling provides a template for establishing a new concussion treatment standard in the assessment and therapeutic guidance of concussion.Methods:The degree and localization of neurovascular uncoupling were statistically contextualized against a normative-based atlas in 270 concussed patients. Functional NeuroCognitive ImagingTMwas used to establish pre-treatment benchmarks and guide neurotherapy. Conventional and functional neurocognitive imaging-directed measures were used to evaluate post-rehabilitative outcomes.Results:Functional neurocognitive imaging was successful in identifying regions of Neurovascular uncoupling unique to each patient’s brain and concussion profile. Longitudinal objective outcome measures demonstrated timely and lasting improvement of neurovascular coupling functioning in a significant majority of patients.Conclusion:We present practice-based evidence supporting the clinical administration of functional neurocognitive imaging with particular efficacy in the neurorehabilitation of concussion. We advocate the reliability of functional neurocognitive imaging in assessing severity and localization of neurovascular uncoupling, and promote its use in the therapeutic guidance and neurorehabilitation of mild traumatic brain injury. We further support the continual exploration of other potential pathophysiological alterations resulting from concussion.


2016 ◽  
Vol 37 (5) ◽  
pp. 1763-1775 ◽  
Author(s):  
Péter Hertelendy ◽  
Ákos Menyhárt ◽  
Péter Makra ◽  
Zoltán Süle ◽  
Tamás Kiss ◽  
...  

Spreading depolarizations of long cumulative duration have been implicated in lesion development and progression in patients with stroke and traumatic brain injury. Spreading depolarizations evolve less likely in the aged brain, but it remains to be determined at what age the susceptibility to spreading depolarizations starts to decline, especially in ischemia. Spreading depolarizations were triggered by epidural electric stimulation prior and after ischemia induction in the cortex of 7–30 weeks old anesthetized rats ( n = 38). Cerebral ischemia was achieved by occlusion of both common carotid arteries. Spreading depolarization occurrence was confirmed by the acquisition of DC potential and electrocorticogram. Cerebral blood flow variations were recorded by laser-Doppler flowmetry. Dendritic spine density in the cortex was determined in Golgi-COX stained sections. Spreading depolarization initiation required increasingly greater electric charge with older age, a potential outcome of consolidation of cortical connections, indicated by altered dendritic spine distribution. The threshold of spreading depolarization elicitation increased with ischemia in all age groups, which may be caused by tissue acidosis and increased K+ conductance, among other factors. In conclusion, the brain appears to be the most susceptible to spreading depolarizations at adolescent age; therefore, spreading depolarizations may occur in young patients of ischemic or traumatic brain injury at the highest probability.


2019 ◽  
Vol 42 ◽  
Author(s):  
Colleen M. Kelley ◽  
Larry L. Jacoby

Abstract Cognitive control constrains retrieval processing and so restricts what comes to mind as input to the attribution system. We review evidence that older adults, patients with Alzheimer's disease, and people with traumatic brain injury exert less cognitive control during retrieval, and so are susceptible to memory misattributions in the form of dramatic levels of false remembering.


2020 ◽  
Vol 5 (1) ◽  
pp. 88-96
Author(s):  
Mary R. T. Kennedy

Purpose The purpose of this clinical focus article is to provide speech-language pathologists with a brief update of the evidence that provides possible explanations for our experiences while coaching college students with traumatic brain injury (TBI). Method The narrative text provides readers with lessons we learned as speech-language pathologists functioning as cognitive coaches to college students with TBI. This is not meant to be an exhaustive list, but rather to consider the recent scientific evidence that will help our understanding of how best to coach these college students. Conclusion Four lessons are described. Lesson 1 focuses on the value of self-reported responses to surveys, questionnaires, and interviews. Lesson 2 addresses the use of immediate/proximal goals as leverage for students to update their sense of self and how their abilities and disabilities may alter their more distal goals. Lesson 3 reminds us that teamwork is necessary to address the complex issues facing these students, which include their developmental stage, the sudden onset of trauma to the brain, and having to navigate going to college with a TBI. Lesson 4 focuses on the need for college students with TBI to learn how to self-advocate with instructors, family, and peers.


2019 ◽  
Vol 28 (3) ◽  
pp. 1363-1370 ◽  
Author(s):  
Jessica Brown ◽  
Katy O'Brien ◽  
Kelly Knollman-Porter ◽  
Tracey Wallace

Purpose The Centers for Disease Control and Prevention (CDC) recently released guidelines for rehabilitation professionals regarding the care of children with mild traumatic brain injury (mTBI). Given that mTBI impacts millions of children each year and can be particularly detrimental to children in middle and high school age groups, access to universal recommendations for management of postinjury symptoms is ideal. Method This viewpoint article examines the CDC guidelines and applies these recommendations directly to speech-language pathology practices. In particular, education, assessment, treatment, team management, and ongoing monitoring are discussed. In addition, suggested timelines regarding implementation of services by speech-language pathologists (SLPs) are provided. Specific focus is placed on adolescents (i.e., middle and high school–age children). Results SLPs are critical members of the rehabilitation team working with children with mTBI and should be involved in education, symptom monitoring, and assessment early in the recovery process. SLPs can also provide unique insight into the cognitive and linguistic challenges of these students and can serve to bridge the gap among rehabilitation and school-based professionals, the adolescent with brain injury, and their parents. Conclusion The guidelines provided by the CDC, along with evidence from the field of speech pathology, can guide SLPs to advocate for involvement in the care of adolescents with mTBI. More research is needed to enhance the evidence base for direct assessment and treatment with this population; however, SLPs can use their extensive knowledge and experience working with individuals with traumatic brain injury as a starting point for post-mTBI care.


Sign in / Sign up

Export Citation Format

Share Document