Designing approach analysis on small-scale software performance testing tools

Author(s):  
XiangFeng Meng
2019 ◽  
Vol 17 (1) ◽  
pp. 101
Author(s):  
Abdul Salam ◽  
Muh Iswar ◽  
Bensar Pali ◽  
Agustinus Anggai ◽  
Janchristo Rantemangnga

This study aims to determine the yarn spinning time, spinning equipment manufacturing costs, and haspel shaft spinning. Basic design is done by data collection, direct visits to the silk farmers' groups, tool design, tool manufacturing, performance testing tools, analysis, calculating costs and tool manufacturing. In accordance with the testing of the spinning machine, the total working time is 8 hours / day for 3.36 kg of silk yarn, the spinning equipment manufacturing cost is Rp. 5,102,534.71. Whereas BEP is achieved when the sale of spinning machines is at least 1 unit / month or when income is Rp. 5,621,064. 


2018 ◽  
Vol 12 (1) ◽  
pp. 217-233
Author(s):  
M. Kheradmand ◽  
F. Pacheco-Torgal ◽  
M. Azenha

Background:Energy efficiency is not only the most cost effective way to reduce emissions but also a way to improve competitiveness and create employment. Geopolymeric mortars containing phase change materials-PCMs have a twofold positive impact concerning eco-efficiency. On one hand, the mortars are based on industrial waste contributing for resource efficiency. And on the other hand, PCM based mortars have the capacity to enhance the thermal performance of the buildings.Objective:This paper reports experimental results on the thermal performance of geopolymeric mortars containing different percentages of phase-change materials-PCMs.Method:Five groups of alkali-activated based mortars with different PCM percentages were produced and placed on a panel within a small scale prototype for thermal performance testing.Results:The results show that the thermal conductivity of the mortars decreased with the increase in the percentage of the PCM.Conclusion:Thermal performance of the PCM based mortars allowed for a stronger attenuation of the temperature amplitudes. Both for heating and cooling loads.


Cloud environment basically offers Software as a Service (SaaS), Infrastructure as a Service (IaaS), and Platform as a Service (PaaS). Here we describe the testing process employed for performance testing. Though new tools for testing cloud are emerging into the market, there are aspects which are suited for manual testing and some which can be speeded up using automatic testing tools. This paper brings out the techniques best suited to test different features of Cloud computing environment. The authors also try to bring out (recommend) broad guidelines to follow while setting up a cloud environment to reduce the number of bugs in the system.


Author(s):  
D. E. Gee ◽  
B. N. Cole

This paper presents an experimental and theoretical study of the design and performance of inertia air filters, with particular reference to rail traction duty. Using a specially constructed test rig, performance testing of commercially available filters was carried out over a wide range of operating conditions. Subsequently, a more fundamental study of some design variables was carried out in a small-scale test rig. The testing was supported by a theoretical approach using a digital computer model of the inertia filtration process. The results of the work indicate that the inertia filter is suited to high-volume, low pressure drop applications. However, operational difficulties, owing to dust build-up occurring within the filter and variations of bleed ratio, may be encountered. The theoretical model was shown to reproduce all the major operating characteristics of the filters measured in the test programme, and to respond to design changes in a similar way to that indicated by earlier published work. A hypothesis of the mechanism of separation is proposed, and it is suggested that the performance of new filter layouts can be examined at the design stage. Supporting work describes the selection, measurement, and production of a suitable range of polydisperse solids for the test programme.


Sign in / Sign up

Export Citation Format

Share Document