Current demand of high performance inverters for renewable energy systems

Author(s):  
Sergio Daher ◽  
Jurgen Schmid ◽  
Fernando Antunes
2021 ◽  
Vol 11 (15) ◽  
pp. 7115
Author(s):  
Chul-Ho Kim ◽  
Min-Kyeong Park ◽  
Won-Hee Kang

The purpose of this study was to provide a guideline for the selection of technologies suitable for ASHRAE international climate zones when designing high-performance buildings. In this study, high-performance technologies were grouped as passive, active, and renewable energy systems. Energy saving technologies comprising 15 cases were categorized into passive, active, and renewable energy systems. EnergyPlus v9.5.0 was used to analyze the contribution of each technology in reducing the primary energy consumption. The energy consumption of each system was analyzed in different climates (Incheon, New Delhi, Minneapolis, Berlin), and the detailed contributions to saving energy were evaluated. Even when the same technology is applied, the energy saving rate differs according to the climatic characteristics. Shading systems are passive systems that are more effective in hot regions. In addition, the variable air volume (VAV) system, combined VAV–energy recovery ventilation (ERV), and combined VAV–underfloor air distribution (UFAD) are active systems that can convert hot and humid outdoor temperatures to create comfortable indoor environments. In cold and cool regions, passive systems that prevent heat loss, such as high-R insulation walls and windows, are effective. Active systems that utilize outdoor air or ventilation include the combined VAV-economizer, the active chilled beam with dedicated outdoor air system (DOAS), and the combined VAV-ERV. For renewable energy systems, the ground source heat pump (GSHP) is more effective. Selecting energy saving technologies that are suitable for the surrounding environment, and selecting design strategies that are appropriate for a given climate, are very important for the design of high-performance buildings globally.


2021 ◽  
Author(s):  
Guojuan Hai ◽  
Jianfeng Huang ◽  
Liyun Cao ◽  
Koji Kajiyoshi ◽  
Long Wang ◽  
...  

Designing cost-effective bifunctional catalysts with high-performance and durability is of great significance for the renewable energy systems. Herein, a typical Fe, Ni-codoped W18O49/NF was prepared via a simple solvothermal method....


2007 ◽  
Vol 12 (3) ◽  
pp. 253-260
Author(s):  
Sérgio Daher ◽  
Jürgen Schmid ◽  
Fernando Luiz Marcelo Antunes

2015 ◽  
Vol 760 ◽  
pp. 147-152 ◽  
Author(s):  
Radu Saulescu ◽  
Mircea Neagoe ◽  
Codruta Jaliu ◽  
Olimpiu Munteanu

Mechanical transmissions are frequently used in renewable energy systems (RES), either as speed reducers in solar tracking systems (e.g. worm drive, planetary gear), or as speed increasers in small hydropower converters or wind turbines. Most of them are conventional transmissions characterized by large overall dimensions and/or low efficiencies; therefore, new mechanical transmissions with higher performances are highly investigated. The paper presents the development of an innovative chain planetary transmission for hydro/wind applications. The speed increaser transmission requires a well-defined transmission ratio according to the application (3 – 5 for hydro, 6 – 30 for wind), good efficiency, relative simple and compact structure, easy maintenance, and low-cost. The final proposed solution overcomes some limits of the RES transmissions, significantly increasing the efficiency while decreasing the system size and eliminating the chain pre-stressing. The steps of the product design process applied for innovative generation of high performance mechanical transmissions are shown in the Part I. The proposed chain planetary transmission integrated into a micro hydropower application is analyzed in the Part II: virtual prototyping, physical testing and optimization stages and results are detailed.


2014 ◽  
Author(s):  
Miles Greiner ◽  
Amy Childress ◽  
Sage Hiibel ◽  
Kwang Kim ◽  
Chanwoo Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document