Downlink Massive MIMO performance of a vertically polarized uniform linear array in Random Line-Of-Sight

Author(s):  
Andres Alayon Glazunov
Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4982 ◽  
Author(s):  
Jehangir Arshad ◽  
Abdul Rehman ◽  
Ateeq Ur Rehman ◽  
Rehmat Ullah ◽  
Seong Oun Hwang

Improved Spectral Efficiency (SE) is a prominent feature of Massive Multiple-Input and Multiple-Output systems. These systems are prepared with antenna clusters at receiver (Rx) and transmitter (Tx). In this paper, we examined a massive MIMO system to increase SE in each cell that ultimately improves the area throughput of the system. We are aiming to find appropriate values of average cell-density (D), available bandwidth (B), and SE to maximize area throughput because it is the function of these parameters. Likewise, a SE augmentation model was developed to attain an increased transmit power and antenna array gain. The proposed model also considers the inter-user interference from neighboring cells along with incident angles of desired and interfering users. Moreover, simulation results validate the proposed model that is implementable in real-time scenarios by realizing maximum SE of 12.79 bits/s/Hz in Line of Sight (LoS) and 12.69 bits/s/Hz in Non-Line of Sight (NLoS) scenarios, respectively. The proposed results also substantiate the SE augmentation because it is a linear function of transmit power and array gain while using the Uniform Linear Array (ULA) configuration. The findings of this work ensure the efficient transmission of information in future networks.


Author(s):  
Ahmed Abdalla ◽  
Suhad Mohammed ◽  
Tang Bin ◽  
Jumma Mary Atieno ◽  
Abdelazeim Abdalla

This paper considers the problem of estimating the direction of arrival (DOA) for the both incoherent and coherent signals from narrowband sources, located in the far field in the case of uniform linear array sensors. Three different methods are analyzed. Specifically, these methods are Music, Root-Music and ESPRIT. The pros and cons of these methods are identified and compared in light of different viewpoints. The performance of the three methods is evaluated, analytically, when possible, and by Matlab simulation. This paper can be a roadmap for beginners in understanding the basic concepts of DOA estimation issues, properties and performance.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 640
Author(s):  
Yujia Tang ◽  
Zhangjian Li ◽  
Yaoyao Cui ◽  
Chen Yang ◽  
Jiabing Lv ◽  
...  

Ultrasound plane wave imaging technology has been applied to more clinical situations than ever before because of its rapid imaging speed and stable imaging quality. Most transducers used in plane wave imaging are linear arrays, but their structures limit the application of plane wave imaging technology in some special clinical situations, especially in the endoscopic environment. In the endoscopic environment, the size of the linear array transducer is strictly miniaturized, and the imaging range is also limited to the near field. Meanwhile, the near field of a micro linear array has serious mutual interferences between elements, which is against the imaging quality of near field. Therefore, we propose a new structure of a micro ultrasound linear array for plane wave imaging. In this paper, a theoretical comparison is given through sound field and imaging simulations. On the basis of primary work and laboratory technology, micro uniform and non-uniform linear arrays were made and experimented with the phantom setting. We selected appropriate evaluation parameters to verify the imaging results. Finally, we concluded that the micro non-uniform linear array eliminated the artifacts better than the micro uniform linear array without the additional use of signal processing methods, especially for target points in the near-field. We believe this study provides a possible solution for plane wave imaging in cramped environments like endoscopy.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 424 ◽  
Author(s):  
Peng Chen ◽  
Zhenxin Cao ◽  
Zhimin Chen ◽  
Linxi Liu ◽  
Man Feng

The performance of a direction-finding system is significantly degraded by the imperfection of an array. In this paper, the direction-of-arrival (DOA) estimation problem is investigated in the uniform linear array (ULA) system with the unknown mutual coupling (MC) effect. The system model with MC effect is formulated. Then, by exploiting the signal sparsity in the spatial domain, a compressed-sensing (CS)-based system model is proposed with the MC coefficients, and the problem of DOA estimation is converted into that of a sparse reconstruction. To solve the reconstruction problem efficiently, a novel DOA estimation method, named sparse-based DOA estimation with unknown MC effect (SDMC), is proposed, where both the sparse signal and the MC coefficients are estimated iteratively. Simulation results show that the proposed method can achieve better performance of DOA estimation in the scenario with MC effect than the state-of-the-art methods, and improve the DOA estimation performance about 31.64 % by reducing the MC effect by about 4 dB.


2013 ◽  
Vol 681 ◽  
pp. 175-180
Author(s):  
Jun Zhao ◽  
Xu Hang

The clutter distribution of airborne radar with non-sidelooking uniform linear array antennas varies with ranges and samples in different range gates are not independent identically distributed vectors, so that the statistical STAP methods degrade greatly. In this paper, an improved clutter range dependence compensation method for airborne radar with uniform linear array is proposed. This method involves in a preprocessing with ADC method to align the mainlobe of clutter spectrum in different range gates and subsequently clutter suppression in other azimuths with EDBU technology. Simulation results show the proposed method can reduce the clutter spectrum dispersion significantly and outperform conventional local compensation methods.


Author(s):  
Hằng

Trong bài báo này, giải pháp hiệu quả cải thiện độ chính xác của định vị trong nhà, dựa trên góc tới AOA( Angle Of Arrival) kết hợp với bộ lọc Kalman đã được đề xuất. Giải pháp này có thể cải thiện độ chính xác cho bài toán định vị nguồn phát trong môi trường trong nhà so với phương pháp AOA truyền thống. Hai kịch bản được tạo ra để kiểm tra hiệu suất của giải pháp đề xuất. Kịch bản thứ nhất môi trường truyền dẫn tồn tại đường LOS ( Line Of Sight) và NLOS, kịch bản thứ hai môi trường truyền dẫn chỉ tồn tại các đường NLOS(Non - Line Of Sight) do các đường LOS bị suy giảm. Kết quả mô phỏng cho thấy, giải pháp đề xuất đạt được độ chính xác cao hơn so với phương pháp AOA truyền thống. Đặc biệt, khi sai số định vị dưới 2m và môi trường chỉ có NLOS, thuật toán đề xuất đạt độ chính xác cao hơn 20% so với thuật toán AOA truyền thống.


Sign in / Sign up

Export Citation Format

Share Document