Service oriented architectures for grid computing environments: opportunities and challenges

Author(s):  
S. Ramaswamy ◽  
M. Malarvannan
Author(s):  
Sonia Ben Mokhtar ◽  
Pierre-Guillaume Raverdy ◽  
Aitor Urbieta ◽  
Roberto Speicys Cardoso

The inherent heterogeneity of ambient computing environments and their constant evolution requires middleware platforms to manage networked components designed, developed, and deployed independently. Such management must also be efficient to cater for resource-constrained devices and highly dynamic situations due to the spontaneous appearance and disappearance of networked resources. For service discovery protocols (SDP), one of the main functions of service-oriented architectures (SOA), the efficiency of the matching of syntactic service descriptions is most often opposed to the fullness of the semantic approach. As part of the PLASTIC middleware, the authors present an interoperable discovery platform that features an efficient matching and ranking algorithm able to process service descriptions and discovery requests from both semantic and syntactic SDPs. To that end, the paper defines a generic, modular description language able to record service functional properties, potentially extended with semantic annotations. The proposed discovery platform leverages the advanced communication capabilities provided by the PLASTIC middleware to discover services in multi-network environments. An evaluation of the prototype implementation demonstrates that multi-protocols service matching supporting various levels of expressiveness can be achieved in ambient computing environments.


Author(s):  
Roland Kübert ◽  
Georgina Gallizo ◽  
Theodoros Polychniatis ◽  
Theodora Varvarigou ◽  
Eduardo Oliveros ◽  
...  

Service Level Agreements (SLAs) are nowadays used as a cornerstone for building service-oriented architectures. SLAs have been closely investigated in the scope of distributed and Grid computing and are now gaining uptake in cloud computing as well. However, most solutions have been developed for specific purposes and are not applicable generally, even though the most approaches propose a general usability. Only rarely have SLAs been applied to real-time systems. The purpose of this chapter is to analyze different fields where SLAs are used, examine the proposed solutions, and investigate how these can be improved in order to better support the creation of real-time service-oriented architectures.


2012 ◽  
pp. 1836-1862 ◽  
Author(s):  
Roland Kübert ◽  
Georgina Gallizo ◽  
Thodoris Polychniatis ◽  
Theodora Varvarigou ◽  
Eduardo Oliveros ◽  
...  

Service Level Agreements (SLAs) are nowadays used as a cornerstone for building service-oriented architectures. SLAs have been closely investigated in the scope of distributed and Grid computing and are now gaining uptake in cloud computing as well. However, most solutions have been developed for specific purposes and are not applicable generally, even though the most approaches propose a general usability. Only rarely have SLAs been applied to real-time systems. The purpose of this chapter is to analyze different fields where SLAs are used, examine the proposed solutions, and investigate how these can be improved in order to better support the creation of real-time service-oriented architectures.


2010 ◽  
Vol 2 (4) ◽  
pp. 13-32 ◽  
Author(s):  
Sonia Ben Mokhtar ◽  
Pierre-Guillaume Raverdy ◽  
Aitor Urbieta ◽  
Roberto Speicys Cardoso

The inherent heterogeneity of ambient computing environments and their constant evolution requires middleware platforms to manage networked components designed, developed, and deployed independently. Such management must also be efficient to cater for resource-constrained devices and highly dynamic situations due to the spontaneous appearance and disappearance of networked resources. For service discovery protocols (SDP), one of the main functions of service-oriented architectures (SOA), the efficiency of the matching of syntactic service descriptions is most often opposed to the fullness of the semantic approach. As part of the PLASTIC middleware, the authors present an interoperable discovery platform that features an efficient matching and ranking algorithm able to process service descriptions and discovery requests from both semantic and syntactic SDPs. To that end, the paper defines a generic, modular description language able to record service functional properties, potentially extended with semantic annotations. The proposed discovery platform leverages the advanced communication capabilities provided by the PLASTIC middleware to discover services in multi-network environments. An evaluation of the prototype implementation demonstrates that multi-protocols service matching supporting various levels of expressiveness can be achieved in ambient computing environments.


Author(s):  
Dimka Karastoyanova ◽  
Frank Leymann

The current trend in Service Oriented Computing (SOC) is to enable support for new delivery models of software and applications. These endeavours impose requirements on the resources and services used, on the way applications are created and on the QoS characteristics of the applications and the supporting infrastructure. Scientific applications on the other hand require improved robustness and reliability of the supporting Grid infrastructures where resources appear and disappear constantly. Enabling business model like Software as a Service (SaaS), Infrastructure as a Service (IaaS), and guaranteeing reliability of Grid infrastructures are requirements that both business and scientific application nowadays impose. The convergence of existing approaches from SOC and Grid Computing is therefore an obvious need. In this work we give an overview of the state-of-the-art of the overlapping research done in the area of SOC and Grid computing with respect to meeting the requirements of the applications in these two areas. We show that the requirements of business applications that already exploit service-oriented architectures (SOA) and the scientific application utilizing Grid infrastructures overlap. Due to the limited extent of cooperation between the two research communities the research results are either overlapping or diverging in spite of the similarities in requirements. Notably, some of the techniques developed in each area are needed but still missing in the other area and vice versa. We argue therefore that in order to enable an enterprise-strength service-oriented infrastructure one needs to combine and leverage the existing Grid and Service middleware in terms of architectures and implementations. We call such an infrastructure the Business Grid. Based on the Business Grid vision we focus in this work on presenting how reliability and robustness of the Business Grid can be improved by employing approaches for flexibility of service compositions. An overview and assessment of these approaches are presented together with recommendations for use. Based on the assumption that Grid services are Web services, these approaches can be utilized to improve the reliability of the scientific applications thus drawing on the advantages flexible workflows provide. This way we improve the robustness of scientific applications by making them flexible and hence improve the features of business applications that employ Grid resources and Grid service compositions to realize the SaaS, IaaS etc. delivery models.


2012 ◽  
pp. 799-820
Author(s):  
Dimka Karastoyanova ◽  
Frank Leymann

The current trend in Service Oriented Computing (SOC) is to enable support for new delivery models of software and applications. These endeavours impose requirements on the resources and services used, on the way applications are created and on the QoS characteristics of the applications and the supporting infrastructure. Scientific applications on the other hand require improved robustness and reliability of the supporting Grid infrastructures where resources appear and disappear constantly. Enabling business model like Software as a Service (SaaS), Infrastructure as a Service (IaaS), and guaranteeing reliability of Grid infrastructures are requirements that both business and scientific application nowadays impose. The convergence of existing approaches from SOC and Grid Computing is therefore an obvious need. In this work we give an overview of the state-of-the-art of the overlapping research done in the area of SOC and Grid computing with respect to meeting the requirements of the applications in these two areas. We show that the requirements of business applications that already exploit service-oriented architectures (SOA) and the scientific application utilizing Grid infrastructures overlap. Due to the limited extent of cooperation between the two research communities the research results are either overlapping or diverging in spite of the similarities in requirements. Notably, some of the techniques developed in each area are needed but still missing in the other area and vice versa. We argue therefore that in order to enable an enterprise-strength service-oriented infrastructure one needs to combine and leverage the existing Grid and Service middleware in terms of architectures and implementations. We call such an infrastructure the Business Grid. Based on the Business Grid vision we focus in this work on presenting how reliability and robustness of the Business Grid can be improved by employing approaches for flexibility of service compositions. An overview and assessment of these approaches are presented together with recommendations for use. Based on the assumption that Grid services are Web services, these approaches can be utilized to improve the reliability of the scientific applications thus drawing on the advantages flexible workflows provide. This way we improve the robustness of scientific applications by making them flexible and hence improve the features of business applications that employ Grid resources and Grid service compositions to realize the SaaS, IaaS etc. delivery models.


2021 ◽  
Vol 15 (2) ◽  
pp. 1-25
Author(s):  
Amal Alhosban ◽  
Zaki Malik ◽  
Khayyam Hashmi ◽  
Brahim Medjahed ◽  
Hassan Al-Ababneh

Service-Oriented Architectures (SOA) enable the automatic creation of business applications from independently developed and deployed Web services. As Web services are inherently a priori unknown, how to deliver reliable Web services compositions is a significant and challenging problem. Services involved in an SOA often do not operate under a single processing environment and need to communicate using different protocols over a network. Under such conditions, designing a fault management system that is both efficient and extensible is a challenging task. In this article, we propose SFSS, a self-healing framework for SOA fault management. SFSS is predicting, identifying, and solving faults in SOAs. In SFSS, we identified a set of high-level exception handling strategies based on the QoS performances of different component services and the preferences articled by the service consumers. Multiple recovery plans are generated and evaluated according to the performance of the selected component services, and then we execute the best recovery plan. We assess the overall user dependence (i.e., the service is independent of other services) using the generated plan and the available invocation information of the component services. Due to the experiment results, the given technique enhances the service selection quality by choosing the services that have the highest score and betters the overall system performance. The experiment results indicate the applicability of SFSS and show improved performance in comparison to similar approaches.


Sign in / Sign up

Export Citation Format

Share Document