Evaluation of the Exit Sequence of Thermal Power in the Transformation of Full Clean Energy Generation

Author(s):  
ZhenLin Ni ◽  
YanHe Li ◽  
Ling Dong ◽  
HongLi Zhang ◽  
FuSuo Liu ◽  
...  
2019 ◽  
Vol 11 (16) ◽  
pp. 4261 ◽  
Author(s):  
Xuerong Li ◽  
Faliang Gui ◽  
Qingpeng Li

The development of clean energy is of great importance in alleviating both the energy crisis and environmental pollution resulting from rapid global economic growth. Hydroelectric generation is considered climate benign, as it neither requires fossil carbon to produce energy nor emits large amounts of greenhouse gases (GHG), unlike conventional energy generation techniques such as coal and oil power plants. However, dams and their associated reservoirs are not entirely GHG-neutral and their classification as a clean source of energy requires further investigation. This study evaluated the environmental impact of the Xiajiang hydropower station based on life cycle assessment (LCA) according to the 2006 Intergovernmental Panel on Climate Change (IPCC) guidelines, focusing specifically on GHG emissions after the submersion of the reservoir. Results reveal that although hydropower is not as clean as we thought, it is still an absolute “low emissions” power type in China. The amount of GHG emissions produced by this station is 3.72 million tons with an emissions coefficient of 32.63 g CO2eq/kWh. This figure is lower than that of thermal power, thus implying that hydropower is still a clean energy resource in China. Our recommendations to further minimize the environmental impacts of this station are the optimization of relevant structural designs, the utilization of new and improved construction materials, and the extension of farmland lifting technology.


Author(s):  
Pei-Ching Tsai ◽  
Yen-Shao Su ◽  
Mengyao Gao ◽  
Li-Hsien Yeh

Ionic diodes, referring to the fluidic devices with ion rectifying properties, have recently received considerable interests from the nanofluidics community due to their promising applications particularly in promoting clean energy....


2020 ◽  
Vol 23 ◽  
Author(s):  
LUIZ ENRIQUE VIEIRA DE SOUZA ◽  
MARCELO FETZ ◽  
ALINA MIKHAILOVNA GILMANOVA CAVALCANTE

Abstract This investigation analyzes the Desertec project, which envisioned a transition to “clean energy” through constructing solar thermal power plants in the Sahara Desert and linking Europe, North Africa, and the Middle East via high voltage cables. Despite great enthusiasm in the international media and some sectors of civil society, the project faced so many obstacles that even the consortium which initially fostered the initiative decided to withdraw. This article uses this case to critically assess the theoretical and epistemological assumptions of the theory of ecological modernization, pointing out an alternate research agenda which focuses on unsuccessful projects in this area (failure cases), emphasizing the limited scope of this theory and the teleological postulate which assumes convergence between economic and environmental rationalities.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 645
Author(s):  
Gary Ampuño ◽  
Juan Lata-Garcia ◽  
Francisco Jurado

The increase of renewable energy generation to change the productivity of a country and electrify isolated sectors are some of the priorities that several governments have imposed in the medium term. Research centers are looking for new technologies to optimize the use of renewable energies and incorporate them into hybrid generation systems. In the present work, the modeling of a solar thermal energy generation plant is being carried out. The climatic data used belong to two coastal cities and one island of Ecuador. The contribution of this work is to simulate a complete model of SCF and PCS, in which the variables of outlet temperature and oil flow are involved at the same time. Previously investigations use only outlet temperature for evaluating power plants. The model of the solar thermal plant is composed of a field of solar collectors, a storage tank, and an energy conversion system. As a result, we obtain a model of a thermosolar plant that will allow us to make decisions when considering the incorporation of micronetworks in systems isolated from the electrical network. The use of thermosolar technology allows the reduction in the risk of spills by the transport of fossil fuels in ships. The study of the CO2 emission factor in Ecuador from 2011 to 2018 is also carried out.


2019 ◽  
Vol 9 (7) ◽  
pp. 1484 ◽  
Author(s):  
Xiangwu Yan ◽  
Weichao Zhang

Due to the irreversible energy substitution from fossil fuels to clean energy, the development trend of future power systems is based on renewable energy generation. However, due to the incompatibility of converter-based non-dispatchable renewable energy generation, the stability and reliability of traditional power systems deteriorate as more renewables are introduced. Since conventional power systems are dominated by synchronous machines (SM), it is natural to utilize a virtual synchronous generator (VSG) control strategy that intimates SM characteristics on integrated converters. The VSG algorithm developed in this paper originates from mimicking mathematic models of synchronous machines. Among the different models of implementation, the second-order model is simple, stable, and compatible with the control schemes of current converters in traditional power systems. The VSG control strategy is thoroughly researched and case studied for various converter-interfaced systems that include renewable generation, energy storage, electric vehicles (EV), and other energy demands. VSG-based integration converters can provide grid services such as spinning reserves and inertia emulation to the upper grids of centralized plants, distributed generation networks, and microgrids. Thus, the VSG control strategy has paved a feasible way for an evolutionary transition to a power electronics-based future power grid. By referring to the knowledge of traditional grids, a hierarchical system of operations can be established. Finally, generation and loads can be united in universal compatibility architecture under consolidated synchronous mechanisms.


2015 ◽  
Vol 1092-1093 ◽  
pp. 175-180
Author(s):  
Dong Lai Xie ◽  
Bing Qi Wang

Fuel cell based micro combined heat and power (micro-CHP) systems are residential scale clean energy conversion unit. It employs fuel cells in a compact system that converts natural gas, propane or other fuels into both electricity and heat, which increases efficiency by simultaneously generating power and heat for one unit, on-site within a home. A prototype system consisting of a natural gas steam reforming unit, CO cleaning unit, PEM fuel cell stack, waste heat recovery unit and auxiliary unit is integrated. Test results of the prototype show that it can start within an hour and the syngas produced can meet the fuel cell’s requirements. The prototype’s electric power and thermal power are 200W and 530W respectively, while the electric and thermal efficiency are 15.4% and 40.9% respectively.


2016 ◽  
Vol 9 (12) ◽  
pp. 3682-3686 ◽  
Author(s):  
T. Li ◽  
M. F. Rabuni ◽  
L. Kleiminger ◽  
B. Wang ◽  
G. H. Kelsall ◽  
...  

A novel micro-structured, highly-robust SOFC that can convert greenhouse gas into clean electrical energy has been developed.


Sign in / Sign up

Export Citation Format

Share Document