Development of a 3D Wind Flow Model for Real-Time Wind Farm Simulation

Author(s):  
Vile Kipke ◽  
Johnny Chhor ◽  
Constantinos Sourkounis
Keyword(s):  
2020 ◽  
Vol 14 (15) ◽  
pp. 2840-2851
Author(s):  
V. Kipke ◽  
J. Chhor ◽  
C. Sourkounis

2017 ◽  
Vol 854 ◽  
pp. 012039 ◽  
Author(s):  
Andreas Rott ◽  
Sjoerd Boersma ◽  
Jan-Willem van Wingerden ◽  
Martin Kühn

Author(s):  
Zhongyou Wu ◽  
Yaoyu Li

Real-time optimization of wind farm energy capture for below rated wind speed is critical for reducing the levelized cost of energy (LCOE). Performance of model based control and optimization techniques can be significantly limited by the difficulty in obtaining accurate turbine and farm models in field operation, as well as the prohibitive cost for accurate wind measurements. The Nested-Loop Extremum Seeking Control (NLESC), recently proposed as a model free method has demonstrated its great potential in wind farm energy capture optimization. However, a major limitation of previous work is the slow convergence, for which a primary cause is the low dither frequencies used by upwind turbines, primarily due to wake propagation delay through the turbine array. In this study, NLESC is enhanced with the predictor based delay compensation proposed by Oliveira and Krstic [1], which allows the use of higher dither frequencies for upwind turbines. The convergence speed can thus be improved, increasing the energy capture consequently. Simulation study is performed for a cascaded three-turbine array using the SimWindFarm platform. Simulation results show the improved energy capture of the wind turbine array under smooth and turbulent wind conditions, even up to 10% turbulence intensity. The impact of the proposed optimization methods on the fatigue loads of wind turbine structures is also evaluated.


Real time simulators play a major role in R&D of Offshore wind farm connected modular multilevel converter (MMC)-HVDC system. These simulators are used for testing the actual prototype of controllers or protection equipment required for the system under study. Modular multilevel converter comprises of number of sub modules (SMs) like Half/ full bridge cells. While computing time domain Electromagnetic transients (EMTs) with the system having large number of SMs pose a great challenge. This computational burden will be more when simulated in real time. To overcome this, several authors proposed equivalent mathematical model of MMC. This paper proposes the real time simulation start-up of offshore wind farm connected modular multilevel converter (MMC)-HVDC system. This paper also describes about how the above said systems is simulated in OPAL-RT based Hypersim software.


Sign in / Sign up

Export Citation Format

Share Document