scholarly journals Intent Matching based Customer Services Chatbot with Natural Language Understanding

Author(s):  
Alvin Chaidrata ◽  
Mariyam Imtha Shafeeu ◽  
Sze Ker Chew ◽  
Zhiyuan Chen ◽  
Jin Sheng Cham ◽  
...  
Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2300
Author(s):  
Rade Matic ◽  
Milos Kabiljo ◽  
Miodrag Zivkovic ◽  
Milan Cabarkapa

In recent years, gradual improvements in communication and connectivity technologies have enabled new technical possibilities for the adoption of chatbots across diverse sectors such as customer services, trade, and marketing. The chatbot is a platform that uses natural language processing, a subset of artificial intelligence, to find the right answer to all users’ questions and solve their problems. Advanced chatbot architecture that is extensible, scalable, and supports different services for natural language understanding (NLU) and communication channels for interactions of users has been proposed. The paper describes overall chatbot architecture and provides corresponding metamodels as well as rules for mapping between the proposed and two commonly used NLU metamodels. The proposed architecture could be easily extended with new NLU services and communication channels. Finally, two implementations of the proposed chatbot architecture are briefly demonstrated in the case study of “ADA” and “COVID-19 Info Serbia”.


1998 ◽  
Vol 37 (04/05) ◽  
pp. 327-333 ◽  
Author(s):  
F. Buekens ◽  
G. De Moor ◽  
A. Waagmeester ◽  
W. Ceusters

AbstractNatural language understanding systems have to exploit various kinds of knowledge in order to represent the meaning behind texts. Getting this knowledge in place is often such a huge enterprise that it is tempting to look for systems that can discover such knowledge automatically. We describe how the distinction between conceptual and linguistic semantics may assist in reaching this objective, provided that distinguishing between them is not done too rigorously. We present several examples to support this view and argue that in a multilingual environment, linguistic ontologies should be designed as interfaces between domain conceptualizations and linguistic knowledge bases.


1995 ◽  
Vol 34 (04) ◽  
pp. 345-351 ◽  
Author(s):  
A. Burgun ◽  
L. P. Seka ◽  
D. Delamarre ◽  
P. Le Beux

Abstract:In medicine, as in other domains, indexing and classification is a natural human task which is used for information retrieval and representation. In the medical field, encoding of patient discharge summaries is still a manual time-consuming task. This paper describes an automated coding system of patient discharge summaries from the field of coronary diseases into the ICD-9-CM classification. The system is developed in the context of the European AIM MENELAS project, a natural-language understanding system which uses the conceptual-graph formalism. Indexing is performed by using a two-step processing scheme; a first recognition stage is implemented by a matching procedure and a secondary selection stage is made according to the coding priorities. We show the general features of the necessary translation of the classification terms in the conceptual-graph model, and for the coding rules compliance. An advantage of the system is to provide an objective evaluation and assessment procedure for natural-language understanding.


Sign in / Sign up

Export Citation Format

Share Document