Acquiring High-Resolution Face Image through Detection and Focusing

Author(s):  
XiaoFeng Song ◽  
WeiZe Zhang ◽  
RuoFeng Tong
Keyword(s):  
2021 ◽  
pp. 1-15
Author(s):  
Yongjie Chu ◽  
Touqeer Ahmad ◽  
Lindu Zhao

Low-resolution face recognition with one-shot is a prevalent problem encountered in law enforcement, where it generally requires to recognize the low-resolution face images captured by surveillance cameras with the only one high-resolution profile face image in the database. The problem is very tough because the available samples is quite few and the quality of unknown images is quite low. To effectively address this issue, this paper proposes Adapted Discriminative Coupled Mappings (AdaDCM) approach, which integrates domain adaptation and discriminative learning. To achieve good domain adaptation performance for small size dataset, a new domain adaptation technique called Bidirectional Locality Matching-based Domain Adaptation (BLM-DA) is first developed. Then the proposed AdaDCM is formulated by unifying BLM-DA and discriminative coupled mappings into a single framework. AdaDCM is extensively evaluated on FERET, LFW, and SCface databases, which includes LR face images obtained in constrained, unconstrained, and real-world environment. The promising results on these datasets demonstrate the effectiveness of AdaDCM in LR face recognition with one-shot.


Author(s):  
HUANXI LIU ◽  
TIANHONG ZHU

Face hallucination is to synthesize high-resolution face image from the input low-resolution one. Although many two-step learning-based face hallucination approaches have been developed, they suffer from the expensive computational cost due to the separate calculation of the global and local models. To overcome this problem, we propose a correlative two-step learning-based face hallucination approach which bridges the gap between the global model and the local model. In the global phase, we build a global face hallucination framework by combining the steerable pyramid decomposition and the reconstruction. In the residue compensation phase, based on the combination weights and constituent samples obtained in the global phase, a residue face image is synthesized by the neighbor reconstruction algorithm to compensate the hallucinated global face image with subtle facial features. The ultimate hallucinated result is synthesized by adding the residue face image to the global face image. Compared with existing methods, in the global phase, our global face image is more similar to the original high-resolution face image. Furthermore, in the residue compensation phase, we use the combination weights and constituent samples obtained in the global phase to compute the residue face image, by which the computational efficiency can be greatly improved without compromising the quality of facial details. The experimental results and comparisons demonstrate that our approach can not only generate convincible high-resolution face images efficiently, but also has high computational efficiency. Furthermore, our proposed approach can be used to restore the damaged face images in image inpainting. The efficacy of our approach is validated by recovering the damaged face images with visually good results.


2014 ◽  
Vol 687-691 ◽  
pp. 3747-3750
Author(s):  
Zhi Zhuang Guo ◽  
Xiao Ling Wang

The resolution of the face image in video may lower than 16*16 in environmental such as ultra long distance, poor illumination and so on, with the very low resolution (VLR) face image the existing face super-resolution (SR) methods do not perform well. In this paper, we proposes a new algorithms by learning the relationship between high-resolution (HR) image space and the VLR image space for face SR.A new constrain, new data constrain are design for reconstruct HR face image form VLR face image. The Experiment results show that the proposed method can recover a clear face image from the VLR face image.


2018 ◽  
Vol 27 (6) ◽  
pp. 2980-2995 ◽  
Author(s):  
Jingang Shi ◽  
Xin Liu ◽  
Yuan Zong ◽  
Chun Qi ◽  
Guoying Zhao

1980 ◽  
Vol 86 (1) ◽  
pp. 113-122 ◽  
Author(s):  
R L Steere ◽  
E F Erbe ◽  
J M Moseley

Fracture-temperature related differences in the ultrastructure of plasmalemma P faces of freeze-fractured baker's yeast (Saccharomyces cerevisiae) have been observed in high-resolution replicas prepared in freeze-etch systems pumped to 2 X 10(-7) torr in which the specimens were protected from contamination by use of liquid nitrogen-cooled shrouds. Two major P-face images were observed regardless of the source of the yeast, the age of the culture, the growth temperature, the physiological condition, or the suspending medium used: (a) a "cold-fracture image" with many strands closely associuated with tubelike particles (essentially the same image as those previously published for yeast freeze-fractured at 77 degrees K), and (b) a "prefracture image" characterized by the presence of more distinct tubelike particles with few or no associated strands (for aging cultures, the image recently referred to as "paracrystalline arrays" of "craterlike particles"). Both types of P-face image can be found in separate areas of single replicas and occasionally even within a single plasma membrane. Whereas portions of replicas known to be fractured at any temperature colder than 218 degrees K reveal only the cold-fracture image, prefracture images are found in cells intentionally fractured at 243 degrees K and in cracks or fissures which develop during the freezing of other specimens. These findings demonstrate that the prefracture image results from the fracturing of specimens at some temperature above 230 degrees K, no t from fracturing specimens at some temperature between 173 degrees and 77 degrees K, and not from the use of "starved" yeast cells.


1967 ◽  
Vol 31 ◽  
pp. 45-46
Author(s):  
Carl Heiles

High-resolution 21-cm line observations in a region aroundlII= 120°,b11= +15°, have revealed four types of structure in the interstellar hydrogen: a smooth background, large sheets of density 2 atoms cm-3, clouds occurring mostly in groups, and ‘Cloudlets’ of a few solar masses and a few parsecs in size; the velocity dispersion in the Cloudlets is only 1 km/sec. Strong temperature variations in the gas are in evidence.


2019 ◽  
Vol 42 ◽  
Author(s):  
J. Alfredo Blakeley-Ruiz ◽  
Carlee S. McClintock ◽  
Ralph Lydic ◽  
Helen A. Baghdoyan ◽  
James J. Choo ◽  
...  

Abstract The Hooks et al. review of microbiota-gut-brain (MGB) literature provides a constructive criticism of the general approaches encompassing MGB research. This commentary extends their review by: (a) highlighting capabilities of advanced systems-biology “-omics” techniques for microbiome research and (b) recommending that combining these high-resolution techniques with intervention-based experimental design may be the path forward for future MGB research.


Sign in / Sign up

Export Citation Format

Share Document