Hardware implementation of a neural network based robust sensor fault accommodation system in flight control system

Author(s):  
Seema Singh ◽  
M. Abhijit ◽  
B. S. Pratham ◽  
P. T. Chirag ◽  
A. Abhinav
2013 ◽  
Vol 22 (3) ◽  
pp. 317-333 ◽  
Author(s):  
Seema Singh ◽  
T. V. Rama Murthy

AbstractThis article deals with detection and accommodation of sensor faults in longitudinal dynamics of an F8 aircraft model. Both the detection of the fault and reconfiguration of the failed sensor are done with the help of neural network-based models. Detection of a sensor fault is done with the help of knowledge-based neural network fault detection (KBNNFD). Apart from KBNNFD, another neural network model is developed in this article for the reconfiguration of the failed sensor. A model-based approach of the neural network (MBNN) is developed, which uses the radial basis function of the neural network. MBNN successfully does the task of providing analytical redundancy for the aircraft sensor. In this work, both detection and reconfiguration of a fault is done using neural networks. Hence, the control system becomes robust for handling sensor failures near steady state and reconfiguration is also faster. A generalized regression neural network (GRNN), which is a type of radial basis network, is used for MBNN, which gives very efficient results for function approximation. An F8 aircraft model and C-Star controller, which improves its handling quality, are used for validation of the method involved. Models of F8 aircraft, C-Star controller, KBNNFD, and MBNN were developed using MATLAB/Simulink. Successful implementation and simulation results are shown and discussed using Simulink.


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1350 ◽  
Author(s):  
Chen ◽  
Wu ◽  
Wu ◽  
Xiong ◽  
Han ◽  
...  

The unmanned aerial vehicle (UAV), which is a typical multi-sensor closed-loop flight control system, has the properties of multivariable, time-varying, strong coupling, and nonlinearity. Therefore, it is very difficult to obtain an accurate mathematical diagnostic model based on the traditional model-based method; this paper proposes a UAV sensor diagnostic method based on data-driven methods, which greatly improves the reliability of the rotor UAV nonlinear flight control system and achieves early warning. In order to realize the rapid on-line fault detection of the rotor UAV flight system and solve the problems of over-fitting, limited generalization, and long training time in the traditional shallow neural network for sensor fault diagnosis, a comprehensive fault diagnosis method based on deep belief network (DBN) is proposed. Using the DBN to replace the shallow neural network, a large amount of off-line historical sample data obtained from the rotor UAV are trained to obtain the optimal DBN network parameters and complete the on-line intelligent diagnosis to achieve the goal of early warning as possible as quickly. In the end, the two common faults of the UAV sensor, namely the stuck fault and the constant deviation fault, are simulated and compared with the back propagation (BP) neural network model represented by the shallow neural network to verify the effectiveness of the proposed method in the paper.


Sign in / Sign up

Export Citation Format

Share Document