Distributed Deployment of Anomaly Detection Scheme in Resource-Limited IoT Devices

Author(s):  
Qun Du ◽  
Yunkai Wei ◽  
Yuming Mao
2022 ◽  
Vol 3 (1) ◽  
pp. 1-23
Author(s):  
Mao V. Ngo ◽  
Tie Luo ◽  
Tony Q. S. Quek

The advances in deep neural networks (DNN) have significantly enhanced real-time detection of anomalous data in IoT applications. However, the complexity-accuracy-delay dilemma persists: Complex DNN models offer higher accuracy, but typical IoT devices can barely afford the computation load, and the remedy of offloading the load to the cloud incurs long delay. In this article, we address this challenge by proposing an adaptive anomaly detection scheme with hierarchical edge computing (HEC). Specifically, we first construct multiple anomaly detection DNN models with increasing complexity and associate each of them to a corresponding HEC layer. Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network . We also incorporate a parallelism policy training method to accelerate the training process by taking advantage of distributed models. We build an HEC testbed using real IoT devices and implement and evaluate our contextual-bandit approach with both univariate and multivariate IoT datasets. In comparison with both baseline and state-of-the-art schemes, our adaptive approach strikes the best accuracy-delay tradeoff on the univariate dataset and achieves the best accuracy and F1-score on the multivariate dataset with only negligibly longer delay than the best (but inflexible) scheme.


Author(s):  
Chen Qi ◽  
Shibo Shen ◽  
Rongpeng Li ◽  
Zhifeng Zhao ◽  
Qing Liu ◽  
...  

AbstractNowadays, deep neural networks (DNNs) have been rapidly deployed to realize a number of functionalities like sensing, imaging, classification, recognition, etc. However, the computational-intensive requirement of DNNs makes it difficult to be applicable for resource-limited Internet of Things (IoT) devices. In this paper, we propose a novel pruning-based paradigm that aims to reduce the computational cost of DNNs, by uncovering a more compact structure and learning the effective weights therein, on the basis of not compromising the expressive capability of DNNs. In particular, our algorithm can achieve efficient end-to-end training that transfers a redundant neural network to a compact one with a specifically targeted compression rate directly. We comprehensively evaluate our approach on various representative benchmark datasets and compared with typical advanced convolutional neural network (CNN) architectures. The experimental results verify the superior performance and robust effectiveness of our scheme. For example, when pruning VGG on CIFAR-10, our proposed scheme is able to significantly reduce its FLOPs (floating-point operations) and number of parameters with a proportion of 76.2% and 94.1%, respectively, while still maintaining a satisfactory accuracy. To sum up, our scheme could facilitate the integration of DNNs into the common machine-learning-based IoT framework and establish distributed training of neural networks in both cloud and edge.


Author(s):  
Xu Liu ◽  
Weiyou Liu ◽  
Xiaoqiang Di ◽  
Jinqing Li ◽  
Binbin Cai ◽  
...  

2022 ◽  
Vol 3 (1) ◽  
pp. 1-30
Author(s):  
Nisha Panwar ◽  
Shantanu Sharma ◽  
Guoxi Wang ◽  
Sharad Mehrotra ◽  
Nalini Venkatasubramanian ◽  
...  

Contemporary IoT environments, such as smart buildings, require end-users to trust data-capturing rules published by the systems. There are several reasons why such a trust is misplaced—IoT systems may violate the rules deliberately or IoT devices may transfer user data to a malicious third-party due to cyberattacks, leading to the loss of individuals’ privacy or service integrity. To address such concerns, we propose IoT Notary , a framework to ensure trust in IoT systems and applications. IoT Notary provides secure log sealing on live sensor data to produce a verifiable “proof-of-integrity,” based on which a verifier can attest that captured sensor data adhere to the published data-capturing rules. IoT Notary is an integral part of TIPPERS, a smart space system that has been deployed at the University of California, Irvine to provide various real-time location-based services on the campus. We present extensive experiments over real-time WiFi connectivity data to evaluate IoT Notary , and the results show that IoT Notary imposes nominal overheads. The secure logs only take 21% more storage, while users can verify their one day’s data in less than 2 s even using a resource-limited device.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiong Yang ◽  
Yuling Chen ◽  
Xiaobin Qian ◽  
Tao Li ◽  
Xiao Lv

The distributed deployment of wireless sensor networks (WSNs) makes the network more convenient, but it also causes more hidden security hazards that are difficult to be solved. For example, the unprotected deployment of sensors makes distributed anomaly detection systems for WSNs more vulnerable to internal attacks, and the limited computing resources of WSNs hinder the construction of a trusted environment. In recent years, the widely observed blockchain technology has shown the potential to strengthen the security of the Internet of Things. Therefore, we propose a blockchain-based ensemble anomaly detection (BCEAD), which stores the model of a typical anomaly detection algorithm (isolated forest) in the blockchain for distributed anomaly detection in WSNs. By constructing a suitable block structure and consensus mechanism, the global model for detection can iteratively update to enhance detection performance. Moreover, the blockchain guarantees the trust environment of the network, making the detection algorithm resistant to internal attacks. Finally, compared with similar schemes, in terms of performance, cost, etc., the results prove that BCEAD performs better.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8017
Author(s):  
Nurfazrina M. Zamry ◽  
Anazida Zainal ◽  
Murad A. Rassam ◽  
Eman H. Alkhammash ◽  
Fuad A. Ghaleb ◽  
...  

Wireless Sensors Networks have been the focus of significant attention from research and development due to their applications of collecting data from various fields such as smart cities, power grids, transportation systems, medical sectors, military, and rural areas. Accurate and reliable measurements for insightful data analysis and decision-making are the ultimate goals of sensor networks for critical domains. However, the raw data collected by WSNs usually are not reliable and inaccurate due to the imperfect nature of WSNs. Identifying misbehaviours or anomalies in the network is important for providing reliable and secure functioning of the network. However, due to resource constraints, a lightweight detection scheme is a major design challenge in sensor networks. This paper aims at designing and developing a lightweight anomaly detection scheme to improve efficiency in terms of reducing the computational complexity and communication and improving memory utilization overhead while maintaining high accuracy. To achieve this aim, one-class learning and dimension reduction concepts were used in the design. The One-Class Support Vector Machine (OCSVM) with hyper-ellipsoid variance was used for anomaly detection due to its advantage in classifying unlabelled and multivariate data. Various One-Class Support Vector Machine formulations have been investigated and Centred-Ellipsoid has been adopted in this study due to its effectiveness. Centred-Ellipsoid is the most effective kernel among studies formulations. To decrease the computational complexity and improve memory utilization, the dimensions of the data were reduced using the Candid Covariance-Free Incremental Principal Component Analysis (CCIPCA) algorithm. Extensive experiments were conducted to evaluate the proposed lightweight anomaly detection scheme. Results in terms of detection accuracy, memory utilization, computational complexity, and communication overhead show that the proposed scheme is effective and efficient compared few existing schemes evaluated. The proposed anomaly detection scheme achieved the accuracy higher than 98%, with (𝑛𝑑) memory utilization and no communication overhead.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiali Wang ◽  
Xiang Lu

The Internet of Things (IoT) is rapidly spreading in various application scenarios through its salient features in ubiquitous device connections, ranging from agriculture and industry to transportation and other fields. As the increasing spread of IoT applications, IoT security is gradually becoming one of the most significant issues to guard IoT devices against various cybersecurity threats. Usually, IoT devices are the main components responsible for sensing, computing, and transmitting; in this case, how to efficiently protect the IoT device itself away from cyber attacks, like malware, virus, and worm, becomes the vital point in IoT security. This paper presents a brand new architecture of intrusion detection system (IDS) for IoT devices, which is designed to identify device- or host-oriented attacks in a lightweight manner in consideration of limited computation resources on IoT devices. To this end, in this paper, we propose a stacking model to couple the Extreme Gradient Boosting (XGBoost) model and the Long Short-Term Memory (LSTM) model together for the abnormal state analysis on the IoT devices. More specifically, we adopt the system call sequence as the indicators of abnormal behaviors. The collected system call sequences are firstly processed by the famous n-gram model, which is a common method used for host-based intrusion detections. Then, the proposed stacking model is used to identify abnormal behaviors hidden in the system call sequences. To evaluate the performance of the proposed model, we establish a real-setting IP camera system and place several typical IoT attacks on the victim IP camera. Extensive experimental evaluations show that the stacking model has outperformed other existing anomaly detection solutions, and we are able to achieve a 0.983 AUC score in real-world data. Numerical testing demonstrates that the XGBoost-LSTM stacking model has excellent performance, stability, and the ability of generalization.


Sign in / Sign up

Export Citation Format

Share Document