In this paper, an algorithm for the inertial sensors errors reduction in a strap-down inertial navigation system, using several miniaturized inertial sensors for each axis of the vehicle frame, is conceived. The algorithm is based on the idea of the maximum ratio-combined telecommunications method. We consider that it would be much more advantageous to set a high number of miniaturized sensors on each input axis of the strap-down inertial system instead of a single one, more accurate but expensive and with larger dimensions. Moreover, a redundant system, which would isolate any of the sensors in case of its malfunctioning, is obtained. In order to test the algorithm, Simulink code is used for algorithm and for the acceleration inertial sensors modeling. The Simulink resulted sensors models include their real errors, based on the data sheets parameters, and were conceived based on the IEEE analytical standardized accelerometers model. An integration algorithm is obtained, in which the signal noise power delivered to the navigation processor, is reduced, proportionally with the number of the integrated sensors. At the same time, the bias of the resulted signal is reduced, and provides a high redundancy degree for the strap-down inertial navigation system at a lower cost than at the cost of more accurate and expensive sensors.