Neural Network Approach for Modeling of Low-Cost Inertial Navigation System Errors

Author(s):  
Maged Ismail ◽  
Ezzeldin Abdelqawey
Author(s):  
Lucian T. Grigorie ◽  
Ruxandra M. Botez

In this paper, an algorithm for the inertial sensors errors reduction in a strap-down inertial navigation system, using several miniaturized inertial sensors for each axis of the vehicle frame, is conceived. The algorithm is based on the idea of the maximum ratio-combined telecommunications method. We consider that it would be much more advantageous to set a high number of miniaturized sensors on each input axis of the strap-down inertial system instead of a single one, more accurate but expensive and with larger dimensions. Moreover, a redundant system, which would isolate any of the sensors in case of its malfunctioning, is obtained. In order to test the algorithm, Simulink code is used for algorithm and for the acceleration inertial sensors modeling. The Simulink resulted sensors models include their real errors, based on the data sheets parameters, and were conceived based on the IEEE analytical standardized accelerometers model. An integration algorithm is obtained, in which the signal noise power delivered to the navigation processor, is reduced, proportionally with the number of the integrated sensors. At the same time, the bias of the resulted signal is reduced, and provides a high redundancy degree for the strap-down inertial navigation system at a lower cost than at the cost of more accurate and expensive sensors.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Lei Sun ◽  
Wenjun Yi ◽  
Dandan Yuan ◽  
Jun Guan

The purpose of this paper is to present an in-flight initial alignment method for the guided projectiles, obtained after launching, and utilizing the characteristic of the inertial device of a strapdown inertial navigation system. This method uses an Elman neural network algorithm, optimized by genetic algorithm in the initial alignment calculation. The algorithm is discussed in details and applied to the initial alignment process of the proposed guided projectile. Simulation results show the advantages of the optimized Elman neural network algorithm for the initial alignment problem of the strapdown inertial navigation system. It can not only obtain the same high-precision alignment as the traditional Kalman filter but also improve the real-time performance of the system.


2012 ◽  
Author(s):  
Hyung-Soon Kim ◽  
Seung-Ho Baeg ◽  
Kwang-Woong Yang ◽  
Kuk Cho ◽  
Sangdeok Park

Sign in / Sign up

Export Citation Format

Share Document