Ambiguity detection methods for improving handwritten mathematical character recognition accuracy in classroom videos

Author(s):  
Smita Vemulapalli ◽  
Monson Hayes
2022 ◽  
Vol 12 (2) ◽  
pp. 853
Author(s):  
Cheng-Jian Lin ◽  
Yu-Cheng Liu ◽  
Chin-Ling Lee

In this study, an automatic receipt recognition system (ARRS) is developed. First, a receipt is scanned for conversion into a high-resolution image. Receipt characters are automatically placed into two categories according to the receipt characteristics: printed and handwritten characters. Images of receipts with these characters are preprocessed separately. For handwritten characters, template matching and the fixed features of the receipts are used for text positioning, and projection is applied for character segmentation. Finally, a convolutional neural network is used for character recognition. For printed characters, a modified You Only Look Once (version 4) model (YOLOv4-s) executes precise text positioning and character recognition. The proposed YOLOv4-s model reduces downsampling, thereby enhancing small-object recognition. Finally, the system produces recognition results in a tax declaration format, which can upload to a tax declaration system. Experimental results revealed that the recognition accuracy of the proposed system was 80.93% for handwritten characters. Moreover, the YOLOv4-s model had a 99.39% accuracy rate for printed characters; only 33 characters were misjudged. The recognition accuracy of the YOLOv4-s model was higher than that of the traditional YOLOv4 model by 20.57%. Therefore, the proposed ARRS can considerably improve the efficiency of tax declaration, reduce labor costs, and simplify operating procedures.


SAGE Open ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 215824401881006
Author(s):  
Ching-Chih Liao

This article investigates the influence of the position of occlusion, structural composition, and design educational status on Chinese character recognition accuracy and response time. Tsao and Liao conducted an experiment using 18 of the 4,000 most commonly used Chinese characters and suggested that the primary and secondary recognition features of a “single-sided” occluded Chinese character are the key radical (or initial strokes) and the key component (i.e., combination of strokes), respectively. The study concluded that right-side occluded characters require a shorter response time and yield more accurate recognition and that educational background does not significantly affect recognition accuracy and response time. The present study considered the same 18 Chinese characters and extended the work of Tsao and Liao by exploring accuracy rate and response time in design and nondesign educational groups for the recognition of “double-sided” occluded Chinese characters. The experimental results indicated that right-side occlusion (including both bottom-right and top-right occlusion) requires a shorter response time and yields more accurate recognition than left-side occlusion. These results agree with those of Tsao and Liao, who found that the key radical of a Chinese character is its key visual recognition feature. Even double-sided occlusion of Chinese characters does not affect the recognition outcome if the position of occlusion does not blur the key radical. Moreover, the participants majoring in design recognized the occluded Chinese characters more slowly than those with no educational background in design.


Author(s):  
Prosenjit Mukherjee ◽  
Shibaprasad Sen ◽  
Kaushik Roy ◽  
Ram Sarkar

This paper explores the domain of online handwritten Bangla character recognition by stroke-based approach. The component strokes of a character sample are recognized firstly and then characters are constructed from the recognized strokes. In the current experiment, strokes are recognized by both supervised and unsupervised approaches. To estimate the features, images of all the component strokes are superimposed. A mean structure has been generated from this superimposed image. Euclidian distances between pixel points of a stroke sample and mean stroke structure are considered as features. For unsupervised approach, K-means clustering algorithm has been used whereas six popular classifiers have been used for supervised approach. The proposed feature vector has been evaluated on 10,000-character database and achieved 90.69% and 97.22% stroke recognition accuracy in unsupervised (using K-means clustering) and supervised way (using MLP [multilayer perceptron] classifier). This paper also discusses about merit and demerits of unsupervised and supervised classification approaches.


2012 ◽  
Vol 586 ◽  
pp. 384-388
Author(s):  
Ling Hua Li ◽  
Shou Fang Mi ◽  
Heng Bo Zhang

This paper describes a stroke-based handwriting analysis method in classifying handwritten Numeric characters by using a template-based approach. Writing strokes are variable from time to time, even when the writing character is same and comes from the same user. Writing strokes include the properties such as the number of the strokes, the shapes and sizes of them and the writing order and the writing speed. We describe here a template-based system using the properties of writing strokes for the recognition of online handwritten numeric characters. Experimental results show that within the 1500 numeric characters taken from 30 writers, the system got 97.84% recognition accuracy which is better than other systems shown by other literatures.


2020 ◽  
Vol 8 (4) ◽  
pp. 304-310
Author(s):  
Windra Swastika ◽  
Ekky Rino Fajar Sakti ◽  
Mochamad Subianto

Low-resolution images can be reconstructed into high-resolution images using the Super-resolution Convolution Neural Network (SRCNN) algorithm. This study aims to improve the vehicle license plate number's recognition accuracy by generating a high-resolution vehicle image using the SRCNN. The recognition is carried out by two types of character recognition methods: Tesseract OCR and SPNet. The training data for SRCNN uses the DIV2K dataset consisting of 900 images, while the training data for character recognition uses the Chars74 dataset. The high-resolution images constructed using SRCNN can increase the average accuracy of vehicle license plate number recognition by 16.9 % using Tesseract and 13.8 % with SPNet.


2021 ◽  
Vol 9 (2) ◽  
pp. 73-84
Author(s):  
Md. Shahadat Hossain ◽  
Md. Anwar Hossain ◽  
AFM Zainul Abadin ◽  
Md. Manik Ahmed

The recognition of handwritten Bangla digit is providing significant progress on optical character recognition (OCR). It is a very critical task due to the similar pattern and alignment of handwriting digits. With the progress of modern research on optical character recognition, it is reducing the complexity of the classification task by several methods, a few problems encounter during recognition and wait to be solved with simpler methods. The modern emerging field of artificial intelligence is the Deep Neural Network, which promises a solid solution to these few handwritten recognition problems. This paper proposed a fine regulated deep neural network (FRDNN) for the handwritten numeric character recognition problem that uses convolutional neural network (CNN) models with regularization parameters which makes the model generalized by preventing the overfitting. This paper applied Traditional Deep Neural Network (TDNN) and Fine regulated deep neural network (FRDNN) models with a similar layer experienced on BanglaLekha-Isolated databases and the classification accuracies for the two models were 96.25% and 96.99%, respectively over 100 epochs. The network performance of the FRDNN model on the BanglaLekha-Isolated digit dataset was more robust and accurate than the TDNN model and depend on experimentation. Our proposed method is obtained a good recognition accuracy compared with other existing available methods.


In the proposed paper we introduce a new Pashtu numerals dataset having handwritten scanned images. We make the dataset publically available for scientific and research use. Pashtu language is used by more than fifty million people both for oral and written communication, but still no efforts are devoted to the Optical Character Recognition (OCR) system for Pashtu language. We introduce a new method for handwritten numerals recognition of Pashtu language through the deep learning based models. We use convolutional neural networks (CNNs) both for features extraction and classification tasks. We assess the performance of the proposed CNNs based model and obtained recognition accuracy of 91.45%.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2914
Author(s):  
Hubert Michalak ◽  
Krzysztof Okarma

Image binarization is one of the key operations decreasing the amount of information used in further analysis of image data, significantly influencing the final results. Although in some applications, where well illuminated images may be easily captured, ensuring a high contrast, even a simple global thresholding may be sufficient, there are some more challenging solutions, e.g., based on the analysis of natural images or assuming the presence of some quality degradations, such as in historical document images. Considering the variety of image binarization methods, as well as their different applications and types of images, one cannot expect a single universal thresholding method that would be the best solution for all images. Nevertheless, since one of the most common operations preceded by the binarization is the Optical Character Recognition (OCR), which may also be applied for non-uniformly illuminated images captured by camera sensors mounted in mobile phones, the development of even better binarization methods in view of the maximization of the OCR accuracy is still expected. Therefore, in this paper, the idea of the use of robust combined measures is presented, making it possible to bring together the advantages of various methods, including some recently proposed approaches based on entropy filtering and a multi-layered stack of regions. The experimental results, obtained for a dataset of 176 non-uniformly illuminated document images, referred to as the WEZUT OCR Dataset, confirm the validity and usefulness of the proposed approach, leading to a significant increase of the recognition accuracy.


2019 ◽  
Vol 16 (10) ◽  
pp. 4164-4169
Author(s):  
Sheifali Gupta ◽  
Udit Jindal ◽  
Deepali Gupta ◽  
Rupesh Gupta

A lot of literature is available on the recognition of handwriting on scripts other than Indians, but the number of articles related to Indian scripts recognition such as Gurumukhi are much less. Gurumukhi is a religion-specific language that ranks 14th frequently spoken language in all languages of the world. In Gurumukhi script, some characters are alike to each other which makes recognition task very difficult. Therefore this article presents a novel approach for Gurumukhi character. This article lays emphasis on convolutional neural networks (CNN), which intend to obtain the features of given data samples and then its mapping is being performed to the right observation. In this approach, a dataset has been prepared for 10 Gurumukhi characters. The proposed methodology obtains a recognition accuracy of 99.34% on Gurumukhi characters images without making use of any post-processing method.


Sign in / Sign up

Export Citation Format

Share Document