Simulation of reverberation time series based on multipath propagation theory

Author(s):  
Xiye Guo ◽  
Shaojing Su ◽  
Yueke Wang
2020 ◽  
Vol 10 (9) ◽  
pp. 3080
Author(s):  
Youngcheol Jung ◽  
Woojae Seong ◽  
Keunhwa Lee ◽  
Seongil Kim

In this paper, a depth-bistatic bottom reverberation model that employs the ray theory is presented. The model can be applied to an active towed array in the ocean. The reverberation time series are modeled under the depth-bistatic assumption and their Doppler shift is calculated based on the actual source–receiver geometry. This model can handle N × 2D range-dependent bathymetry, the geometry of a triplet array, and the Doppler motion of the source, targets, and receiver. The model predictions are compared with the mid-frequency reverberation data measured by an active triplet towed array during August 2015 in the East Sea, Korea. These data are collected with a variable depth source at mid-frequency and the triplet line array in a deep-water environment. Model predictions of the beam time series and its spectrogram are in good agreement with the measurement. In particular, we discuss the effects of the source and receiver depths on the reverberation in deep water observed in both the measured and modeled results.


2009 ◽  
Vol 126 (4) ◽  
pp. 2224
Author(s):  
Steven A. Stotts ◽  
Robert A. Koch

Author(s):  
V Aparna ◽  
Priyanka Saini ◽  
R. Pradeepa ◽  
V. P. Felix

2006 ◽  
Vol 120 (5) ◽  
pp. 3381-3381
Author(s):  
Kevin D. LePage ◽  
Charles W. Holland ◽  
Peter Neumann

1994 ◽  
Vol 144 ◽  
pp. 279-282
Author(s):  
A. Antalová

AbstractThe occurrence of LDE-type flares in the last three cycles has been investigated. The Fourier analysis spectrum was calculated for the time series of the LDE-type flare occurrence during the 20-th, the 21-st and the rising part of the 22-nd cycle. LDE-type flares (Long Duration Events in SXR) are associated with the interplanetary protons (SEP and STIP as well), energized coronal archs and radio type IV emission. Generally, in all the cycles considered, LDE-type flares mainly originated during a 6-year interval of the respective cycle (2 years before and 4 years after the sunspot cycle maximum). The following significant periodicities were found:• in the 20-th cycle: 1.4, 2.1, 2.9, 4.0, 10.7 and 54.2 of month,• in the 21-st cycle: 1.2, 1.6, 2.8, 4.9, 7.8 and 44.5 of month,• in the 22-nd cycle, till March 1992: 1.4, 1.8, 2.4, 7.2, 8.7, 11.8 and 29.1 of month,• in all interval (1969-1992):a)the longer periodicities: 232.1, 121.1 (the dominant at 10.1 of year), 80.7, 61.9 and 25.6 of month,b)the shorter periodicities: 4.7, 5.0, 6.8, 7.9, 9.1, 15.8 and 20.4 of month.Fourier analysis of the LDE-type flare index (FI) yields significant peaks at 2.3 - 2.9 months and 4.2 - 4.9 months. These short periodicities correspond remarkably in the all three last solar cycles. The larger periodicities are different in respective cycles.


Sign in / Sign up

Export Citation Format

Share Document