Network Anomaly Detection Technology Based on Deep Learning

Author(s):  
Adekunle Damilola Eunice ◽  
Qi Gao ◽  
Meng-Yuan Zhu ◽  
Zhuo Chen ◽  
Na LV
Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5446
Author(s):  
Hyojung Ahn ◽  
Inchoon Yeo

As the workforce shrinks, the demand for automatic, labor-saving, anomaly detection technology that can perform maintenance on advanced equipment such as vehicles has been increasing. In a vehicular environment, noise in the cabin, which directly affects users, is considered an important factor in lowering the emotional satisfaction of the driver and/or passengers in the vehicles. In this study, we provide an efficient method that can collect acoustic data, measured using a large number of microphones, in order to detect abnormal operations inside the machine via deep learning in a quick and highly accurate manner. Unlike most current approaches based on Long Short-Term Memory (LSTM) or autoencoders, we propose an anomaly detection (AD) algorithm that can overcome the limitations of noisy measurement and detection system anomalies via noise signals measured inside the mechanical system. These features are utilized to train a variety of anomaly detection models for demonstration in noisy environments with five different errors in machine operation, achieving an accuracy of approximately 90% or more.


Author(s):  
Ugur Cekmez ◽  
Zeki Erdem ◽  
Ali Gokhan Yavuz ◽  
Ozgur Koray Sahingoz ◽  
Ali Buldu

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 140806-140817 ◽  
Author(s):  
Ritesh K. Malaiya ◽  
Donghwoon Kwon ◽  
Sang C. Suh ◽  
Hyunjoo Kim ◽  
Ikkyun Kim ◽  
...  

2017 ◽  
Vol 22 (S1) ◽  
pp. 949-961 ◽  
Author(s):  
Donghwoon Kwon ◽  
Hyunjoo Kim ◽  
Jinoh Kim ◽  
Sang C. Suh ◽  
Ikkyun Kim ◽  
...  

Author(s):  
Diana Gaifilina ◽  
Igor Kotenko

Introduction: The article discusses the problem of choosing deep learning models for detecting anomalies in Internet of Things (IoT) network traffic. This problem is associated with the necessity to analyze a large number of security events in order to identify the abnormal behavior of smart devices. A powerful technology for analyzing such data is machine learning and, in particular, deep learning. Purpose: Development of recommendations for the selection of deep learning models for anomaly detection in IoT network traffic. Results: The main results of the research are comparative analysis of deep learning models, and recommendations on the use of deep learning models for anomaly detection in IoT network traffic. Multilayer perceptron, convolutional neural network, recurrent neural network, long short-term memory, gated recurrent units, and combined convolutional-recurrent neural network were considered the basic deep learning models. Additionally, the authors analyzed the following traditional machine learning models: naive Bayesian classifier, support vector machines, logistic regression, k-nearest neighbors, boosting, and random forest. The following metrics were used as indicators of anomaly detection efficiency: accuracy, precision, recall, and F-measure, as well as the time spent on training the model. The constructed models demonstrated a higher accuracy rate for anomaly detection in large heterogeneous traffic typical for IoT, as compared to conventional machine learning methods. The authors found that with an increase in the number of neural network layers, the completeness of detecting anomalous connections rises. This has a positive effect on the recognition of unknown anomalies, but increases the number of false positives. In some cases, preparing traditional machine learning models takes less time. This is due to the fact that the application of deep learning methods requires more resources and computing power. Practical relevance: The results obtained can be used to build systems for network anomaly detection in Internet of Things traffic.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4583 ◽  
Author(s):  
Vibekananda Dutta ◽  
Michał Choraś ◽  
Marek Pawlicki ◽  
Rafał Kozik

Currently, expert systems and applied machine learning algorithms are widely used to automate network intrusion detection. In critical infrastructure applications of communication technologies, the interaction among various industrial control systems and the Internet environment intrinsic to the IoT technology makes them susceptible to cyber-attacks. Given the existence of the enormous network traffic in critical Cyber-Physical Systems (CPSs), traditional methods of machine learning implemented in network anomaly detection are inefficient. Therefore, recently developed machine learning techniques, with the emphasis on deep learning, are finding their successful implementations in the detection and classification of anomalies at both the network and host levels. This paper presents an ensemble method that leverages deep models such as the Deep Neural Network (DNN) and Long Short-Term Memory (LSTM) and a meta-classifier (i.e., logistic regression) following the principle of stacked generalization. To enhance the capabilities of the proposed approach, the method utilizes a two-step process for the apprehension of network anomalies. In the first stage, data pre-processing, a Deep Sparse AutoEncoder (DSAE) is employed for the feature engineering problem. In the second phase, a stacking ensemble learning approach is utilized for classification. The efficiency of the method disclosed in this work is tested on heterogeneous datasets, including data gathered in the IoT environment, namely IoT-23, LITNET-2020, and NetML-2020. The results of the evaluation of the proposed approach are discussed. Statistical significance is tested and compared to the state-of-the-art approaches in network anomaly detection.


Sign in / Sign up

Export Citation Format

Share Document