Hybrid salient motion detection using temporal differencing and Kalman filter tracking with non-stationary camera

Author(s):  
Xuesong Le ◽  
Ruben Gonzalez
2011 ◽  
Vol 58-60 ◽  
pp. 2290-2295 ◽  
Author(s):  
Ruo Hong Huan ◽  
Xiao Mei Tang ◽  
Zhe Hu Wang ◽  
Qing Zhang Chen

A method of abnormal motion detection for intelligent video surveillance is presented, which includes object intrusion detection, object overlong stay detection and object overpopulation detection. Background subtraction algorithm is used to detect moving objects in video streams. Kalman filter is applied for object tracking. By the construction of relation matrix, the tracking process is divided into five statuses for prediction and estimation, which are object disappearing, object separating, new object appearing, object sheltering and object matching. The object parameters and predictive information in the next frame which is used to track moving objects is established by Kalman filter. Then, three types of abnormal motion detection are implemented. The relative position of alarm area or guard line with the rectangle boxes of the moving objects is used to detect whether the object is invading. The existing time of the moving objects in monitor area is counted to detect whether the object is staying too long. Moving objects in the monitor area are classified and counted to detect whether the objects are too much. Alarm will be triggered when abnormal motion detection as defined is detected in the monitor area.


2012 ◽  
Vol 505 ◽  
pp. 367-372
Author(s):  
Yan Ling Wang ◽  
Xiao Li Wang ◽  
Guang Lun Li

Real-time segmentation of moving regions in image sequences is a fundamental step in video monitoring systems. This paper presents an improved motion detection algorithm in a dynamic scene based on change detection. The algorithm integrates the temporal differencing method and background subtraction method to achieve better performance. Background subtraction is a typical change detection approach to segment foreground, but the continuous or abrupt variations of lighting conditions that cause unexpected changes in intensities on the background reference image. So we combine the background subtraction’s result with temporal difference’s result. The foreground mask is segmented by both the methods of background subtraction and temporal differencing. Finally, a post-processing is applied on the obtained object mask to reduce regions and smooth the moving region boundary. Experimental results demonstrate that the proposed method can update the background exactly and quickly along with the variation of illumination, and the moving objects can be extracted effectively.


Sign in / Sign up

Export Citation Format

Share Document