An Improved Hand Gesture Recognition with Two-Stage Convolution Neural Networks Using a Hand Color Image and its Pseudo-Depth Image

Author(s):  
Jiaqing Liu ◽  
Kotaro Furusawa ◽  
Tomoko Tateyama ◽  
Yutaro Iwamoto ◽  
Yen-Wei Chen
Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 1007
Author(s):  
Chi Xu ◽  
Yunkai Jiang ◽  
Jun Zhou ◽  
Yi Liu

Hand gesture recognition and hand pose estimation are two closely correlated tasks. In this paper, we propose a deep-learning based approach which jointly learns an intermediate level shared feature for these two tasks, so that the hand gesture recognition task can be benefited from the hand pose estimation task. In the training process, a semi-supervised training scheme is designed to solve the problem of lacking proper annotation. Our approach detects the foreground hand, recognizes the hand gesture, and estimates the corresponding 3D hand pose simultaneously. To evaluate the hand gesture recognition performance of the state-of-the-arts, we propose a challenging hand gesture recognition dataset collected in unconstrained environments. Experimental results show that, the gesture recognition accuracy of ours is significantly boosted by leveraging the knowledge learned from the hand pose estimation task.


Sign in / Sign up

Export Citation Format

Share Document