scholarly journals Estimation of soft tissue mechanical parameters from robotic manipulation data

Author(s):  
Pasu Boonvisut ◽  
Russell Jackson ◽  
M. Cenk Cavusoglu
Medicina ◽  
2020 ◽  
Vol 56 (10) ◽  
pp. 520
Author(s):  
Johann Zwirner ◽  
Mario Scholze ◽  
Benjamin Ondruschka ◽  
Niels Hammer

Background and Objectives: Profound knowledge on the load-dependent behavior of human soft tissues is required for the development of suitable replacements as well as for realistic computer simulations. Regarding the former, e.g., the anisotropy of a particular biological tissue has to be represented with site- and direction-dependent particular mechanical values. Contrary to this concept of consistent mechanical properties of a defined soft tissue, mechanical parameters of soft tissues scatter considerably when being determined in tensile tests. In spite of numerous measures taken to standardize the mechanical testing of soft tissues, several setup- and tissue-related factors remain to influence the mechanical parameters of human soft tissues to a yet unknown extent. It is to date unclear if measurement extremes should be considered a variation or whether these data have to be deemed incorrect measurement outliers. This given study aimed to determine mechanical parameters of the human cranial dura mater as a model for human soft tissues using a highly standardized protocol and based on this, critically evaluate the definition for the term mechanical “variation” of human soft tissue. Materials and Methods: A total of 124 human dura mater samples with an age range of 3 weeks to 94 years were uniformly retrieved, osmotically adapted and mechanically tested using customized 3D-printed equipment in a quasi-static tensile testing setup. Scanning electron microscopy of 14 samples was conducted to relate the mechanical parameters to morphological features of the dura mater. Results: The here obtained mechanical parameters were scattered (elastic modulus = 46.06 MPa, interquartile range = 33.78 MPa; ultimate tensile strength = 5.56 MPa, interquartile range = 4.09 MPa; strain at maximum force = 16.58%, interquartile range = 4.81%). Scanning electron microscopy revealed a multi-layered nature of the dura mater with varying fiber directions between its outer and inner surface. Conclusions: It is concluded that mechanical parameters of soft tissues such as human dura mater are highly variable even if a highly standardized testing setup is involved. The tissue structure and composition appeared to be the main contributor to the scatter of the mechanical parameters. In consequence, mechanical variation of soft tissues can be defined as the extremes of a biomechanical parameter due to an uncontrollable change in tissue structure and/or the respective testing setup.


2006 ◽  
Vol 975 ◽  
Author(s):  
Amanpreet Kaur Bembey ◽  
Michelle L Oyen ◽  
Virginia L. Ferguson ◽  
Andrew J. Bushby ◽  
Alan Boyde

ABSTRACTIn the current study, the effects of polar solvents on tissue volume and mechanical properties are considered. Area shrinkage measurements are conducted for mineralized, bone tissue samples soaked in polar solvents. Area shrinkage is used to calculate approximate linear and volume shrinkage. Results are compared with viscoelastic mechanical parameters for bone in the same solvents (as measured previously) and with both shrinkage measurements and mechanical data for nonmineralized tissues, as taken from the existing literature. As expected, the shrinkage of mineralized tissues is minimal when compared with shrinkage of nonmineralized tissues immersed in the same polar solvents. The mechanical changes in bone are also substantially less than in nonmineralized tissues. The largest stiffness values are found in shrunken bone samples (immersed in acetone and ethanol). The mineral phase in bone thus resists tissue shrinkage that would otherwise occur in the pure soft tissue phase.


Author(s):  
D. C. Swartzendruber ◽  
Norma L. Idoyaga-Vargas

The radionuclide gallium-67 (67Ga) localizes preferentially but not specifically in many human and experimental soft-tissue tumors. Because of this localization, 67Ga is used in clinical trials to detect humar. cancers by external scintiscanning methods. However, the fact that 67Ga does not localize specifically in tumors requires for its eventual clinical usefulness a fuller understanding of the mechanisms that control its deposition in both malignant and normal cells. We have previously reported that 67Ga localizes in lysosomal-like bodies, notably, although not exclusively, in macrophages of the spocytaneous AKR thymoma. Further studies on the uptake of 67Ga by macrophages are needed to determine whether there are factors related to malignancy that might alter the localization of 67Ga in these cells and thus provide clues to discovering the mechanism of 67Ga localization in tumor tissue.


Author(s):  
J. P. Brunschwig ◽  
R. M. McCombs ◽  
R. Mirkovic ◽  
M. Benyesh-Melnick

A new virus, established as a member of the herpesvirus group by electron microscopy, was isolated from spontaneously degenerating cell cultures derived from the kidneys and lungs of two normal tree shrews. The virus was found to replicate best in cells derived from the homologous species. The cells used were a tree shrew cell line, T-23, which was derived from a spontaneous soft tissue sarcoma. The virus did not multiply or did so poorly for a limited number of passages in human, monkey, rodent, rabbit or chick embryo cells. In the T-23 cells, the virus behaved as members of the subgroup B of herpesvirus, in that the virus remained primarily cell associated.


Sign in / Sign up

Export Citation Format

Share Document