Laboratory Based Automotive Radar for Mobile Targets Ranging

Author(s):  
Kota Tirumalesh ◽  
A.A. Bazil Raj
Author(s):  
Hiroyuki HATANO ◽  
Masahiro FUJII ◽  
Atsushi ITO ◽  
Yu WATANABE ◽  
Yusuke YOSHIDA ◽  
...  

Author(s):  
Alicja Ossowska ◽  
Leen Sit ◽  
Sarath Manchala ◽  
Thomas Vogler ◽  
Kevin Krupinski ◽  
...  

2017 ◽  
Author(s):  
Sujeet Patole ◽  
Murat Torlak ◽  
Dan Wang ◽  
Murtaza Ali

Automotive radars, along with other sensors such as lidar, (which stands for “light detection and ranging”), ultrasound, and cameras, form the backbone of self-driving cars and advanced driver assistant systems (ADASs). These technological advancements are enabled by extremely complex systems with a long signal processing path from radars/sensors to the controller. Automotive radar systems are responsible for the detection of objects and obstacles, their position, and speed relative to the vehicle. The development of signal processing techniques along with progress in the millimeter- wave (mm-wave) semiconductor technology plays a key role in automotive radar systems. Various signal processing techniques have been developed to provide better resolution and estimation performance in all measurement dimensions: range, azimuth-elevation angles, and velocity of the targets surrounding the vehicles. This article summarizes various aspects of automotive radar signal processing techniques, including waveform design, possible radar architectures, estimation algorithms, implementation complexity-resolution trade-off, and adaptive processing for complex environments, as well as unique problems associated with automotive radars such as pedestrian detection. We believe that this review article will combine the several contributions scattered in the literature to serve as a primary starting point to new researchers and to give a bird’s-eye view to the existing research community.


Author(s):  
Philipp Ritter

Abstract Next-generation automotive radar sensors are increasingly becoming sensitive to cost and size, which will leverage monolithically integrated radar system-on-Chips (SoC). This article discusses the challenges and the opportunities of the integration of the millimeter-wave frontend along with the digital backend. A 76–81 GHz radar SoC is presented as an evaluation vehicle for an automotive, fully depleted silicon-over-insulator 22 nm CMOS technology. It features a digitally controlled oscillator, 2-millimeter-wave transmit channels and receive channels, an analog base-band with analog-to-digital conversion as well as a digital signal processing unit with on-chip memory. The radar SoC evaluation chip is packaged and flip-chip mounted to a high frequency printed circuit board for functional demonstration and performance evaluation.


Author(s):  
Arthur Ouaknine ◽  
Alasdair Newson ◽  
Julien Rebut ◽  
Florence Tupin ◽  
Patrick Perez
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document