Real-time vision-based multiple vehicle detection and tracking for nighttime traffic surveillance

Author(s):  
Yen-Lin Chen ◽  
Bing-Fei Wu ◽  
Chung-Jui Fan
Author(s):  
Adhi Prahara ◽  
Ahmad Azhari ◽  
Murinto Murinto

Vehicle has several types and each of them has different color, size, and shape. The appearance of vehicle also changes if viewed from different viewpoint of traffic surveillance camera. This situation can create many possibilities of vehicle poses. However, the one in common, vehicle pose usually follows road direction. Therefore, this research proposes a method to estimate the pose of vehicle for vehicle detection and tracking based on road direction. Vehicle training data are generated from 3D vehicle models in four-pair orientation categories. Histogram of Oriented Gradients (HOG) and Linear-Support Vector Machine (Linear-SVM) are used to build vehicle detectors from the data. Road area is extracted from traffic surveillance image to localize the detection area. The pose of vehicle which estimated based on road direction will be used to select a suitable vehicle detector for vehicle detection process. To obtain the final vehicle object, vehicle line checking method is applied to the vehicle detection result. Finally, vehicle tracking is performed to give label on each vehicle. The test conducted on various viewpoints of traffic surveillance camera shows that the method effectively detects and tracks vehicle by estimating the pose of vehicle. Performance evaluation of the proposed method shows 0.9170 of accuracy and 0.9161 of balance accuracy (BAC).


2020 ◽  
Vol 39 (3) ◽  
pp. 2693-2710 ◽  
Author(s):  
Wael Farag

In this paper, an advanced-and-reliable vehicle detection-and-tracking technique is proposed and implemented. The Real-Time Vehicle Detection-and-Tracking (RT_VDT) technique is well suited for Advanced Driving Assistance Systems (ADAS) applications or Self-Driving Cars (SDC). The RT_VDT is mainly a pipeline of reliable computer vision and machine learning algorithms that augment each other and take in raw RGB images to produce the required boundary boxes of the vehicles that appear in the front driving space of the car. The main contribution of this paper is the careful fusion of the employed algorithms where some of them work in parallel to strengthen each other in order to produce a precise and sophisticated real-time output. In addition, the RT_VDT provides fast enough computation to be embedded in CPUs that are currently employed by ADAS systems. The particulars of the employed algorithms together with their implementation are described in detail. Additionally, these algorithms and their various integration combinations are tested and their performance is evaluated using actual road images, and videos captured by the front-mounted camera of the car as well as on the KITTI benchmark with 87% average precision achieved. The evaluation of the RT_VDT shows that it reliably detects and tracks vehicle boundaries under various conditions.


Sign in / Sign up

Export Citation Format

Share Document