Visual servoing based path planning for wheeled mobile robot in obstacle environments

Author(s):  
Mahmut Dirik ◽  
Adnan Fatih Kocamaz ◽  
Emrah Donmez
Author(s):  
Dayal R. Parhi ◽  
Animesh Chhotray

PurposeThis paper aims to generate an obstacle free real time optimal path in a cluttered environment for a two-wheeled mobile robot (TWMR).Design/methodology/approachThis TWMR resembles an inverted pendulum having an intermediate body mounted on a robotic mobile platform with two wheels driven by two DC motors separately. In this article, a novel motion planning strategy named as DAYANI arc contour intelligent technique has been proposed for navigation of the two-wheeled self-balancing robot in a global environment populated by obstacles. The developed new path planning algorithm evaluates the best next feasible point of motion considering five weight functions from an arc contour depending upon five separate navigational parameters.FindingsAuthenticity of the proposed navigational algorithm has been demonstrated by computing the path length and time taken through a series of simulations and experimental verifications and the average percentage of error is found to be about 6%.Practical implicationsThis robot dynamically stabilizes itself with taller configuration, can spin on the spot and rove along through obstacles with smaller footprints. This diversifies its areas of application to both indoor and outdoor environments especially with very narrow spaces, sharp turns and inclined surfaces where its multi-wheel counterparts feel difficult to perform.Originality/valueA new obstacle avoidance and path planning algorithm through incremental step advancement by evaluating the best next feasible point of motion has been established and verified through both experiment and simulation.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Fujie Wang ◽  
Yi Qin ◽  
Fang Guo ◽  
Bin Ren ◽  
John T. W. Yeow

This paper investigates the stabilization and trajectory tracking problem of wheeled mobile robot with a ceiling-mounted camera in complex environment. First, an adaptive visual servoing controller is proposed based on the uncalibrated kinematic model due to the complex operation environment. Then, an adaptive controller is derived to provide a solution of uncertain dynamic control for a wheeled mobile robot subject to parametric uncertainties. Furthermore, the proposed controllers can be applied to a more general situation where the parallelism requirement between the image plane and operation plane is no more needed. The overparameterization of regressor matrices is avoided by exploring the structure of the camera-robot system, and thus, the computational complexity of the controller can be simplified. The Lyapunov method is employed to testify the stability of a closed-loop system. Finally, simulation results are presented to demonstrate the performance of the suggested control.


Axioms ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 58 ◽  
Author(s):  
Mahmut Dirik ◽  
Oscar Castillo ◽  
Adnan Fatih Kocamaz

Mobile robot motion planning in an unstructured, static, and dynamic environment is faced with a large amount of uncertainties. In an uncertain working area, a method should be selected to address the existing uncertainties in order to plan a collision-free path between the desired two points. In this paper, we propose a mobile robot path planning method in the visualize plane using an overhead camera based on interval type-2 fuzzy logic (IT2FIS). We deal with a visual-servoing based technique for obstacle-free path planning. It is necessary to determine the location of a mobile robot in an environment surrounding the robot. To reach the target and for avoiding obstacles efficiently under different shapes of obstacle in an environment, an IT2FIS is designed to generate a path. A simulation of the path planning technique compared with other methods is performed. We tested the algorithm within various scenarios. Experiment results showed the efficiency of the generated path using an overhead camera for a mobile robot.


Sign in / Sign up

Export Citation Format

Share Document