Modeling of arsenic transient enhanced diffusion and background boron segregation in low-energy As/sup +/ implanted Si

Author(s):  
Ryangsu Kim ◽  
T. Aoki ◽  
T. Hirose ◽  
Y. Furuta ◽  
S. Hayashi ◽  
...  
1997 ◽  
Author(s):  
Ruey-Dar Chang ◽  
P. S. Choi ◽  
Dirk Wristers ◽  
P. K. Chu ◽  
Dim-Lee Kwong

1997 ◽  
Vol 469 ◽  
Author(s):  
N. E. B. Cowern ◽  
E. J. H. Collart ◽  
J. Politiek ◽  
P. H. L. Bancken ◽  
J. G. M. Van Berkum ◽  
...  

ABSTRACTLow energy implantation is currently the most promising option for shallow junction formation in the next generations of silicon CMOS technology. Of the dopants that have to be implanted, boron is the most problematic because of its low stopping power (large penetration depth) and its tendency to undergo transient enhanced diffusion and clustering during thermal activation. This paper reports recent advances in our understanding of low energy B implants in crystalline silicon. In general, satisfactory source-drain junction depths and sheet resistances are achievable down to 0.18 micron CMOS technology without the need for implantation of molecular species such as BF2. With the help of defect engineering it may be possible to reach smaller device dimensions. However, there are some major surprises in the physical mechanisms involved in implant profile formation, transient enhanced diffusion and electrical activation of these implants, which may influence further progress with this technology. Some initial attempts to understand and model these effects will be described.


1995 ◽  
Vol 67 (14) ◽  
pp. 2025-2027 ◽  
Author(s):  
L. H. Zhang ◽  
K. S. Jones ◽  
P. H. Chi ◽  
D. S. Simons

1998 ◽  
Vol 84 (11) ◽  
pp. 5997-6002 ◽  
Author(s):  
V. Krishnamoorthy ◽  
K. Moller ◽  
K. S. Jones ◽  
D. Venables ◽  
J. Jackson ◽  
...  

1999 ◽  
Vol 568 ◽  
Author(s):  
Kenji Taniguchi ◽  
Tomoya Saito ◽  
Jianxin Xia ◽  
Ryangsu Kim ◽  
Takenori Aoki ◽  
...  

ABSTRACTBoron segregation to {311} defects and transient enhanced diffusion (TED) of boron atoms during thermal annealing were investigated in detail using implanted superlattice and Si bulk wafers. We observed that (1)boron atoms segregate to {311} defects during low temperature annealing, (2){311} defects were formed in the area where the self-interstitial concentration exceeds 3×1017cm3, (3)free self-interstitials in the region beyond the implanted range causes initial rapid enhanced diffusion prior to the onset of normal TED.


1998 ◽  
Vol 54 (1-3) ◽  
pp. 80-83 ◽  
Author(s):  
Norihiro Shimada ◽  
Takaaki Aoki ◽  
Jiro Matsuo ◽  
Isao Yamada ◽  
Kenichi Goto ◽  
...  

2000 ◽  
Vol 610 ◽  
Author(s):  
E. Napolitani ◽  
A. Carnera ◽  
V. Privitera ◽  
E. Schroer ◽  
G. Mannino ◽  
...  

AbstractThe transient enhanced diffusion (TED) during activation annealing of ultra low energy implanted boron (0.5 keV & 1 keV, 1×1013/cm2 & 1×1014/cm2) in silicon is investigated in detail. Annealing in the temperature range from 450°C to 750°C is either performed directly after implantation or after the removal of a surface layer before annealing. The kinetics revealed two regimes of enhanced diffusion ruled by different decay constants and different activation energies. The dependence of these two processes on implantation energy and annealing temperature is described and explained from the microscopical point of view. The annealings performed after surface layer removal, revealed that the defects responsible for the faster diffusion are located deeper than the defects responsible for the slower process.


Sign in / Sign up

Export Citation Format

Share Document