Numerical simulations of high heat dissipation technology in LSI 3-D packaging using carbon nanotube through silicon via (CNT-TSV) and thermal interface material (CNT-TIM)

Author(s):  
Teppei Kawanabe ◽  
Akio Kawabata ◽  
Torno Murakami ◽  
Mizuhisa Nihei ◽  
Yuji Awano
Author(s):  
J. C. Matayabas ◽  
Vassou LeBonheur

The recent trend in microprocessor architecture has been to increase the number of transistors (higher power), shrink processor size (smaller die), and increase clock speeds (higher frequency) in order to meet the market demand for high performance microprocessors. These have resulted in the escalation of power dissipation as well as the heat flux at the silicon die level. The Intel packaging technology development group has been challenged to develop packaging solutions that not only meet the package thermal targets but also the reliability requirements. As a result, an integrated heat spreading (IHS) package was developed, comprising a Cu based heat spreader and a first level thermal interface material (TIM) between the die and the heat spreader. Due to CTE mismatches between its different elements, the IHS package is subjected to high level of thermo-mechanical stresses which lead to severe failures post reliability testing. A significant amount of theoretical understanding of thermal resistance has been developed and applied to the development of TIM formulations, and it was found that the thermo-mechanical properties of the TIM material need to be optimized to mitigate the package reliability stresses. Several material and process solutions have been investigated using fundamental approaches, and, as a result of these efforts, low stress silicone gel TIM’s were developed. This paper provides an overview of the silicone gel TIM technologies investigated at Intel, and the key learnings from the fundamental material and package integration studies.


Carbon ◽  
2020 ◽  
Vol 158 ◽  
pp. 930
Author(s):  
Xue-song Liu ◽  
Qian-gang Fu ◽  
Hui Wang ◽  
Ya-long Wei ◽  
Qiang Song

2014 ◽  
Vol 136 (1) ◽  
Author(s):  
Rui Zhang ◽  
Jian Cai ◽  
Qian Wang ◽  
Jingwei Li ◽  
Yang Hu ◽  
...  

To promote heat dissipation in power electronics, we investigated the thermal conduction performance of Sn-Bi solder paste between two Cu plates. We measured the thermal resistance of Sn-Bi solder paste used as thermal interface material (TIM) by laser flash technique, and a thermal resistance less than 5 mm2 K/W was achieved for the Sn-Bi TIM. The Sn-Bi solder also showed a good reliability in terms of thermal resistance after thermal cycling, indicating that it can be a promising candidate for the TIM used for power electronics applications. In addition, we estimated the contact thermal resistance at the interface between the Sn-Bi solder and the Cu plate with the assistance of scanning acoustic microscopy. The experimental data showed that Sn-Bi solder paste could be a promising adhesive material used to attach power modules especially with a large size on the heat sink.


2013 ◽  
Vol 829 ◽  
pp. 217-221 ◽  
Author(s):  
Mitra Salami ◽  
Tahereh Fanaei Sheikholeslami ◽  
Samira Fathi

Thermoelectric (TE) devices are an interested family of energy harvesters which could convert the thermal energy into electricity. However, the temperature drops at interface between thermoelectric materials and heat source, heat sink and electrodes reduce efficiency of thermoelectric devices. As a solution, thermal interface materials (TIM) which have high thermal conductance and low thermal interface resistance with adjacent materials are added to the device. In this paper, the organic material is considered as the base material for a TE energy harvester device. Also, carbon nanotube (CNT) is applied as TIM, because of its high one dimentional electrical and thermal conductance. A finite element analysis is carried out in order to investigate the role of thermal contact resistance on heat transfer at TE device. To do this, a thermoelectric leg is simulated with two structure consist of (a) TE material and electrodes in direct contact (b) TE material and electrodes with CNT interface and the results are compared. It is shown that CNT layer reduces heat dissipation at the interface and so the temperature difference at the both sides of polymer is increased, which finally results the enhancement of device output voltage.


Author(s):  
Raihana Bahru ◽  
Mohd Faiz Muaz Ahmad Zamri ◽  
Abd Halim Shamsuddin ◽  
Norazuwana Shaari ◽  
Mohd Ambri Mohamed

2014 ◽  
Vol 1061-1062 ◽  
pp. 96-99 ◽  
Author(s):  
Liang Ke Wu ◽  
Ji Ying ◽  
Li Ting Chen

In order to improve the thermal conductivity of silicone, we prepared silicone/carbon nanotube array (CNTA) composite by immersing the CNTA into silicone solution and cured at 110 °C. The thermal conductivity of silicone and silicone/CNTA composite was measured by laser flash method at 30 °C, 60 °C, 90 °C, 120 °C, which are usually the operating temperatures. It was found that the thermal conductivity of silicone/CNTA composite increased with the temperature until achieved the plateau near 90 °C. The maximum thermal conductivity of silicone/CNTA composite is 0.674 W/mK, which is 220% higher than that of neat silicone. The excellent thermal conductivity makes the composite a promising thermal interface material.


Author(s):  
Baratunde A. Cola ◽  
Xianfan Xu ◽  
Timothy S. Fisher

The thermal performance of an interface material comprised of a metal foil with dense, vertically oriented carbon nanotube (CNT) arrays synthesized on both of its surfaces is characterized for rough and smooth interfaces. The CNT/foil deforms in the interfaces by two mechanisms, CNT deformation and foil deformation, that may significantly increase the number of CNT contact spots on both sides of the foil. As a result, the thermal conduction at the CNT-array-free-tip interfaces is greatly increased from previous measurements.


Sign in / Sign up

Export Citation Format

Share Document