Efficient single image dehazing via scene-adaptive segmentation and improved dark channel model

Author(s):  
He Zhang ◽  
Xin Liu ◽  
Yiu-ming Cheung
2016 ◽  
Vol 10 (11) ◽  
pp. 877-884 ◽  
Author(s):  
Xin Liu ◽  
He Zhang ◽  
Yuan Yan Tang ◽  
Ji-Xiang Du

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 73330-73339 ◽  
Author(s):  
Jehoiada Jackson ◽  
She Kun ◽  
Kwame Obour Agyekum ◽  
Ariyo Oluwasanmi ◽  
Parinya Suwansrikham

Author(s):  
Jehoiada Jackson ◽  
Oluwasanmi Ariyo ◽  
Kingsley Acheampong ◽  
Maxwell Boakye ◽  
Enoch Frimpong ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1266
Author(s):  
Jing Qin ◽  
Liang Chen ◽  
Jian Xu ◽  
Wenqi Ren

In this paper, we propose a novel method to remove haze from a single hazy input image based on the sparse representation. In our method, the sparse representation is proposed to be used as a contextual regularization tool, which can reduce the block artifacts and halos produced by only using dark channel prior without soft matting as the transmission is not always constant in a local patch. A novel way to use dictionary is proposed to smooth an image and generate the sharp dehazed result. Experimental results demonstrate that our proposed method performs favorably against the state-of-the-art dehazing methods and produces high-quality dehazed and vivid color results.


2021 ◽  
Vol E104.D (10) ◽  
pp. 1758-1761
Author(s):  
Hao ZHOU ◽  
Zhuangzhuang ZHANG ◽  
Yun LIU ◽  
Meiyan XUAN ◽  
Weiwei JIANG ◽  
...  

Author(s):  
Jaspreet Kaur ◽  
Srishti Sabharwal ◽  
Ayush Dogra ◽  
Bhawna Goyal ◽  
Rohit Anand

2018 ◽  
Vol 47 (2) ◽  
pp. 210001
Author(s):  
刘国 LIU Guo ◽  
吕群波 L Qun bo ◽  
刘扬阳 LIU Yang yang

Sign in / Sign up

Export Citation Format

Share Document