Automatic Classification of Vulnerabilities using Deep Learning and Machine Learning Algorithms

Author(s):  
Vishnu Ramesh ◽  
Sara Abraham ◽  
P Vinod ◽  
Isham Mohamed ◽  
Corrado A. Visaggio ◽  
...  
2021 ◽  
Vol 11 (11) ◽  
pp. 5230
Author(s):  
Isabel Santiago ◽  
Jorge Luis Esquivel-Martin ◽  
David Trillo-Montero ◽  
Rafael Jesús Real-Calvo ◽  
Víctor Pallarés-López

In this work, the automatic classification of daily irradiance profiles registered in a photovoltaic installation located in the south of Spain was carried out for a period of nine years, with a sampling frequency of 5 min, and the subsequent analysis of the operation of the elements of the installation on each type of day was also performed. The classification was based on the total daily irradiance values and the fluctuations of this parameter throughout the day. The irradiance profiles were grouped into nine different categories using unsupervised machine learning algorithms for clustering, implemented in Python. It was found that the behaviour of the modules and the inverter of the installation was influenced by the type of day obtained, such that the latter worked with a better average efficiency on days with higher irradiance and lower fluctuations. However, the modules worked with better average efficiency on days with irradiance fluctuations than on clear sky days. This behaviour of the modules may be due to the presence, on days with passing clouds, of the phenomenon known as cloud enhancement, in which, due to reflections of radiation on the edges of the clouds, irradiance values can be higher at certain moments than those that occur on clear sky days, without passing clouds. This is due to the higher energy generated during these irradiance peaks and to the lower temperatures that the module reaches due to the shaded areas created by the clouds, resulting in a reduction in its temperature losses.


2020 ◽  
Vol 48 (4) ◽  
pp. 2316-2327
Author(s):  
Caner KOC ◽  
Dilara GERDAN ◽  
Maksut B. EMİNOĞLU ◽  
Uğur YEGÜL ◽  
Bulent KOC ◽  
...  

Classification of hazelnuts is one of the values adding processes that increase the marketability and profitability of its production. While traditional classification methods are used commonly, machine learning and deep learning can be implemented to enhance the hazelnut classification processes. This paper presents the results of a comparative study of machine learning frameworks to classify hazelnut (Corylus avellana L.) cultivars (‘Sivri’, ‘Kara’, ‘Tombul’) using DL4J and ensemble learning algorithms. For each cultivar, 50 samples were used for evaluations. Maximum length, width, compression strength, and weight of hazelnuts were measured using a caliper and a force transducer. Gradient boosting machine (Boosting), random forest (Bagging), and DL4J feedforward (Deep Learning) algorithms were applied in traditional machine learning algorithms. The data set was partitioned into a 10-fold-cross validation method. The classifier performance criteria of accuracy (%), error percentage (%), F-Measure, Cohen’s Kappa, recall, precision, true positive (TP), false positive (FP), true negative (TN), false negative (FN) values are provided in the results section. The results showed classification accuracies of 94% for Gradient Boosting, 100% for Random Forest, and 94% for DL4J Feedforward algorithms.


2021 ◽  
Vol 12 (3) ◽  
pp. 1550-1556
Author(s):  
Ravi Kumar Y B Et.al

The current research work encompasses the assessment of similarity based facial features of images with erected method so as to determines the genealogical similarity. It is based on the principle of grouping the closer features, as compared to those which are away from the predefined threshold for a better ascertainment of the extracted features. The system developed is trained using deep learning-oriented architecture incorporating these closer features for a binary classification of the subjects considered into genealogic non-genealogic. The genealogic set of data is further used to calculate the percentage of similarity with erected methods. The present work considered XX datasets from XXXX source for the assessment of facial similarities. The results portrayed an accuracy of 96.3% for genealogic data, the salient among them being those of father-daughter (98.1%), father-son(98.3%), mother-daughter(96.6%), mother-son(96.1%) genealogy in case of the datasets from “kinface W-I”. Extending this work onto “kinface W-II” set of data, the results were promising with father-daughter(98.5%), father-son(96.7%), mother-daughter(93.4%) and mother-son(98.9%) genealogy. Such an approach could be further extended to larger database so as to assess the genealogical similarity with the aid of machine-learning algorithms.


PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0163041 ◽  
Author(s):  
Hjalmar K. Turesson ◽  
Sidarta Ribeiro ◽  
Danillo R. Pereira ◽  
João P. Papa ◽  
Victor Hugo C. de Albuquerque

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rajat Garg ◽  
Anil Kumar ◽  
Nikunj Bansal ◽  
Manish Prateek ◽  
Shashi Kumar

AbstractUrban area mapping is an important application of remote sensing which aims at both estimation and change in land cover under the urban area. A major challenge being faced while analyzing Synthetic Aperture Radar (SAR) based remote sensing data is that there is a lot of similarity between highly vegetated urban areas and oriented urban targets with that of actual vegetation. This similarity between some urban areas and vegetation leads to misclassification of the urban area into forest cover. The present work is a precursor study for the dual-frequency L and S-band NASA-ISRO Synthetic Aperture Radar (NISAR) mission and aims at minimizing the misclassification of such highly vegetated and oriented urban targets into vegetation class with the help of deep learning. In this study, three machine learning algorithms Random Forest (RF), K-Nearest Neighbour (KNN), and Support Vector Machine (SVM) have been implemented along with a deep learning model DeepLabv3+ for semantic segmentation of Polarimetric SAR (PolSAR) data. It is a general perception that a large dataset is required for the successful implementation of any deep learning model but in the field of SAR based remote sensing, a major issue is the unavailability of a large benchmark labeled dataset for the implementation of deep learning algorithms from scratch. In current work, it has been shown that a pre-trained deep learning model DeepLabv3+ outperforms the machine learning algorithms for land use and land cover (LULC) classification task even with a small dataset using transfer learning. The highest pixel accuracy of 87.78% and overall pixel accuracy of 85.65% have been achieved with DeepLabv3+ and Random Forest performs best among the machine learning algorithms with overall pixel accuracy of 77.91% while SVM and KNN trail with an overall accuracy of 77.01% and 76.47% respectively. The highest precision of 0.9228 is recorded for the urban class for semantic segmentation task with DeepLabv3+ while machine learning algorithms SVM and RF gave comparable results with a precision of 0.8977 and 0.8958 respectively.


Sign in / Sign up

Export Citation Format

Share Document