Vehicle stability enhancement using sliding mode based active front steering and direct yaw moment control

Author(s):  
Arobindra Saikia ◽  
Chitralekha Mahanta
2018 ◽  
Vol 41 (9) ◽  
pp. 2428-2440 ◽  
Author(s):  
Jiaxu Zhang ◽  
Jing Li

This paper presents an integrated vehicle chassis control (IVCC) strategy to improve vehicle handling and stability by coordinating active front steering (AFS) and direct yaw moment control (DYC) in a hierarchical way. In high-level control, the corrective yaw moment is calculated by the fast terminal sliding mode control (FTSMC) method, which may improve the transient response of the system, and a non-linear disturbance observer (NDO) is used to estimate and compensate for the model uncertainty and external disturbance to suppress the chattering of FTSMC. In low-level control, the null-space-based control reallocation method and inverse tyre model are utilized to transform the corrective yaw moment to the desired longitudinal slips and the steer angle increment of front wheels by considering the constraints of actuators and friction ellipse of each wheel. Finally, the performance of the proposed control strategy is verified through simulations of various manoeuvres based on vehicle dynamic software CarSim.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Wanke Cao ◽  
Zhiyin Liu ◽  
Yuhua Chang ◽  
Antoni Szumanowski

This paper investigates the robust direct yaw-moment control (DYC) through parameter-dependent fuzzy sliding mode control (SMC) approach for all-wheel-independent-drive electric vehicles (AWID-EVs) subject to network-induced delays. AWID-EVs have obvious advantages in terms of DYC over the traditional centralized-drive vehicles. However it is one of the most principal issues for AWID-EVs to ensure the robustness of DYC. Furthermore, the network-induced delays would also reduce control performance of DYC and even deteriorate the EV system. To ensure robustness of DYC and deal with network-induced delays, a parameter-dependent fuzzy sliding mode control (FSMC) method based on the real-time information of vehicle states and delays is proposed in this paper. The results of cosimulations with Simulink® and CarSim® demonstrate the effectiveness of the proposed controller. Moreover, the results of comparison with a conventional FSMC controller illustrate the strength of explicitly dealing with network-induced delays.


2001 ◽  
Author(s):  
M. A. Selby ◽  
W. J. Manning ◽  
M. D. Brown ◽  
D. A. Crolla

Abstract This paper studies the benefits of coordinating stability and steerability controllers to reduce vehicle deceleration during limit handling situations. The stability controller, DYC, uses the vehicle brakes to apply a restoring moment when the vehicle sideslip angle and sideslip velocity exceed fixed bounds. This use of the brakes interferes with the longitudinal dynamics of the vehicle in a way that drivers find undesirable. Active front steering (AFS) and active rear steering(ARS) can be used to tune the vehicle handling balance in the low to mid-range lateral-acceleration regime. Earlier work has shown that the use of AFS can reduce the interference observed using DYC alone. The levels of improvement achievable by coordinating AFS and ARS with DYC are quantified using open loop handling simulations tests by predicting the deceleration of the vehicle in an extreme manoeuvre. The results from these simulations are compared to assess the relative benefits of AFS and ARS when coordinated with DYC. The computer simulations are based on a four-degree of freedom vehicle model incorporating longitudinal, lateral, yaw, roll, and load transfer effects.


Author(s):  
Ling Yu ◽  
Sunan Yuan

In order to improve the stability and safety of vehicles, it is necessary to control them. In this study, the integrated control method of drive-by-wire independent drive electric vehicle was studied. Firstly, the reference model of electric vehicle was established. Then, an integrated control method of acceleration slip regulation (ARS) and direct yaw moment control (DYC) was designed for controlling the nonlinearity of tyre, and the simulation experiment was carried out under the environment of MATLAB/SIMULINK. The results showed that the vehicle lost its stability when it was uncontrolled; under the control of a single DYC controller, r and β values got some control, but the vehicle stability was still low; under the integrated control of ARS+DYC, the vehicle stability was significantly improved; under the integrated control method, the overshoot, regulation time and steady-state error of the system were all small. Under the simulation of extreme conditions, the integrated control method also showed excellent performance, which suggested the method was reliable. The experimental results suggests the effectiveness of the integrated control method, which makes some contributions to the further research of the integrated control of electric vehicles.


Sign in / Sign up

Export Citation Format

Share Document