Cross-Layer Design for Real-Time Video Transmission in Cognitive Wireless Networks

Author(s):  
Haiyan Luo ◽  
Song Ci ◽  
Dalei Wu ◽  
Hui Tang
Author(s):  
Tarek Bejaoui ◽  
Nidal Nasser

This chapter introduces the cross layer design for resource allocation over multimedia wireless networks. Conventional layered packet scheduling and call admission control schemes are presented and a number of cross-layered protocols that are recently proposed are investigated. The chapter highlights the QoS improvement and the performance gain obtained while considering the interlayer dependencies concept for various real-time and non-real-time applications. The authors hope that this chapter will assist in the understanding of the cross layering and its enhancement of the layered design for QoS provisioning in future multimedia wireless networks.


Author(s):  
Tarek Bejaoui ◽  
Nidal Nasser

This chapter introduces the cross layer design for resource allocation over multimedia wireless networks. Conventional layered packet scheduling and call admission control schemes are presented and a number of cross-layered protocols that are recently proposed are investigated. The chapter highlights the QoS improvement and the performance gain obtained while considering the interlayer dependencies concept for various real-time and non-real-time applications. The authors hope that this chapter will assist in the understanding of the cross layering and its enhancement of the layered design for QoS provisioning in future multimedia wireless networks.


2015 ◽  
Vol 7 (3) ◽  
pp. 1 ◽  
Author(s):  
Haider Noori AL-Hashimi ◽  
Waleed Noori Hussein

VANET Networks are one of the main next generation wireless networks which are envisaged to be an integration of homogeneous and heterogeneous wireless networks. The inter-networking of these wireless networks with the Internet will provide ubiquitous access to roaming network users. However, a seamless handover mechanism with negligible handover delay is required to maintain active connections during roaming across these networks. Several solutions, mainly involving host-based localized mobility management schemes, have been widely proposed to reduce handover delay among homogeneous and heterogeneous wireless networks. However, the handover delay remains high and unacceptable for delay-sensitive services such as real-time and multimedia services. Moreover, these services will be very common in next generation wireless networks. Unfortunately, these widely proposed host-based localized mobility management schemes involve the vehicle in mobility-related signalling hence effectively increasing the handover delay. Furthermore, these schemes do not properly address the advanced handover scenarios envisaged in future wireless networks. This paper, therefore, proposes a VANET mobility management framework utilizing cross-layer design, the IEEE 802.21 future standard, and the recently emerged network-based localized mobility management protocol, Proxy Mobile IPv6, to further reduce handover delay.


Sign in / Sign up

Export Citation Format

Share Document