Detecting Malicious Model Updates from Federated Learning on Conditional Variational Autoencoder

Author(s):  
Zhipin Gu ◽  
Yuexiang Yang
2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Osman Mamun ◽  
Madison Wenzlick ◽  
Arun Sathanur ◽  
Jeffrey Hawk ◽  
Ram Devanathan

AbstractThe Larson–Miller parameter (LMP) offers an efficient and fast scheme to estimate the creep rupture life of alloy materials for high-temperature applications; however, poor generalizability and dependence on the constant C often result in sub-optimal performance. In this work, we show that the direct rupture life parameterization without intermediate LMP parameterization, using a gradient boosting algorithm, can be used to train ML models for very accurate prediction of rupture life in a variety of alloys (Pearson correlation coefficient >0.9 for 9–12% Cr and >0.8 for austenitic stainless steels). In addition, the Shapley value was used to quantify feature importance, making the model interpretable by identifying the effect of various features on the model performance. Finally, a variational autoencoder-based generative model was built by conditioning on the experimental dataset to sample hypothetical synthetic candidate alloys from the learnt joint distribution not existing in both 9–12% Cr ferritic–martensitic alloys and austenitic stainless steel datasets.


2021 ◽  
Vol 11 (2) ◽  
pp. 624
Author(s):  
In-su Jo ◽  
Dong-bin Choi ◽  
Young B. Park

Chinese characters in ancient books have many corrupted characters, and there are cases in which objects are mixed in the process of extracting the characters into images. To use this incomplete image as accurate data, we use image completion technology, which removes unnecessary objects and restores corrupted images. In this paper, we propose a variational autoencoder with classification (VAE-C) model. This model is characterized by using classification areas and a class activation map (CAM). Through the classification area, the data distribution is disentangled, and then the node to be adjusted is tracked using CAM. Through the latent variable, with which the determined node value is reduced, an image from which unnecessary objects have been removed is created. The VAE-C model can be utilized not only to eliminate unnecessary objects but also to restore corrupted images. By comparing the performance of removing unnecessary objects with mask regions with convolutional neural networks (Mask R-CNN), one of the prevalent object detection technologies, and also comparing the image restoration performance with the partial convolution model (PConv) and the gated convolution model (GConv), which are image inpainting technologies, our model is proven to perform excellently in terms of removing objects and restoring corrupted areas.


Sign in / Sign up

Export Citation Format

Share Document