Hybrid Algorithm for Optimal Improvement of a Distribution System Resiliency Using Renewable Energy Resources: Case Colombia

Author(s):  
Rafael Ramirez Burgos ◽  
Luis Danilo Altamar ◽  
Adriana Arango ◽  
Juan Carlos Bedoya
2014 ◽  
Vol 573 ◽  
pp. 346-351
Author(s):  
G.S. Satheesh Kumar ◽  
Chinnadurai Nagarajan ◽  
M. Lizzy Nesa Bagyam

A Recent concept of distribution infrastructure plays a vital role in the efficient utilization of energy. To avoid global warming and greenhouse gas emission, carbon based power plant should be replaced with distributed renewable energy (DRE) such as wind, solar etc. Renewable energy resources can be integrated to grid by intelligent electronic devices (IED). This paper deals with the novel automation architecture that supports power distribution systems to avoid power blackout and also it briefs the major requirement of the smart grid distribution system needed for a competitive world. International standard IEC 61850 and IEC 61499 provides a solution for substation automation through intelligent logical nodes (ILNs) which enhances interoperability and configurability.Later an open source platform is used for enhancing the communication that automatically generates the data model and communication nodes for intelligent electronic devices.However for future requirements in smart grid, the addition of new functions as well as the adaptation of function for IEDs is necessary. A concept of reconfigurable software architecture is introduced for integrating distributed and renewable energy resources. Such interfaces and services provide adaptation of the functional structure and contribute efficient Smart Grid system. This survey summarizes the communication infrastructure of smart energy system.


2021 ◽  
Author(s):  
Adnan Arapovic

With emerging concerns over climate change and the need for reduced greenhouse gas emissions, together with the growing awareness of the importance of the natural environment and the depletion of the earth's non-renewable energy resources, the generation of electricity from distributed renewable energy resource such as solar photovoltaic (PV) and wind energy has begun to expand at a rapid pace. Proliferation of convert-based distributed energy resources in distribution systems has introduced new challenges in determining the maximum possible fault currents that a power system must be able to withstand without being compromised. Therefore is is imperative to develop the mathematical and software simulation models that approximate the response of converter-based distributed energy resources during a fault on the transmission or distribution system in order to determine the fault current contributions to the electrical grid that a transmission or distribution utility needs to reflect in their connection impact assessments.


2021 ◽  
Author(s):  
Adnan Arapovic

With emerging concerns over climate change and the need for reduced greenhouse gas emissions, together with the growing awareness of the importance of the natural environment and the depletion of the earth's non-renewable energy resources, the generation of electricity from distributed renewable energy resource such as solar photovoltaic (PV) and wind energy has begun to expand at a rapid pace. Proliferation of convert-based distributed energy resources in distribution systems has introduced new challenges in determining the maximum possible fault currents that a power system must be able to withstand without being compromised. Therefore is is imperative to develop the mathematical and software simulation models that approximate the response of converter-based distributed energy resources during a fault on the transmission or distribution system in order to determine the fault current contributions to the electrical grid that a transmission or distribution utility needs to reflect in their connection impact assessments.


2014 ◽  
Vol 986-987 ◽  
pp. 371-376 ◽  
Author(s):  
Yan Zhang ◽  
Bo Guo ◽  
Tao Zhang

This paper discusses using the battery energy storage system (BESS) to mitigate intermittency and sustain stability of distribution system integrating high penetration level of renewable energy resources (RER). The goal of the control is to have the BESS provide as much smoothing as possible, so that the RER power can be dispatchable in some kind and reliable. The effectiveness of model predictive control (MPC) based approach proposed in this paper have been tested by detail case study, also compared with the day ahead control strategy, load following strategy , and normal situation without energy storage which are usually used before. The result shows that the proposed MPC based approach is more practical, and more robust.


Sign in / Sign up

Export Citation Format

Share Document