Development of model-based remote maintenance robot system. IV. A practical stiffness control method for redundant robot arm

Author(s):  
Y. Asari ◽  
H. Sato ◽  
T. Yoshimi ◽  
K. Tatsuno ◽  
K. Asano
2019 ◽  
Vol 39 (4) ◽  
pp. 696-714
Author(s):  
Nikola Lukic ◽  
Petar B. Petrovic

Purpose Stiffness control of redundant robot arm, aimed at using extra degrees of freedom (DoF) to shape the robot tool center point (TCP) elastomechanical behavior to be consistent with the essential requirements needed for a successful part mating process, i.e., to mimic part supporting mechanism with selective quasi-isotropic compliance (Remote Center of Compliance – RCC), with additional properties of inherent flexibility. Design/methodology/approach Theoretical analysis and synthesis of the complementary projector for null-space stiffness control of kinematically redundant robot arm. Practical feasibility of the proposed approach was proven by extensive computer simulations and physical experiments, based on commercially available 7 DoF SIA 10 F Yaskawa articulated robot arm, equipped with the open-architecture control system, system for generating excitation force, dedicated sensory system for displacement measurement and a system for real-time acquisition of sensory data. Findings Simulation experiments demonstrated convergence and stability of the proposed complementary projector. Physical experiments demonstrated that the proposed complementary projector can be implemented on the commercially available anthropomorphic redundant arm upgraded with open-architecture control system and that this projector has the capacity to efficiently affect the task-space TCP stiffness of the robot arm, with a satisfactory degree of consistency with the behavior obtained in the simulation experiments. Originality/value A novel complementary projector was synthesized based on the adopted objective function. Practical verification was conducted using computer simulations and physical experiments. For the needs of physical experiments, an adequate open-architecture control system was developed and upgraded through the implementation of the proposed complementary projector and an adequate system for generating excitation and measuring displacement of the robot TCP. Experiments demonstrated that the proposed complementary projector for null-space stiffness control is capable of producing the task-space TCP stiffness, which can satisfy the essential requirements needed for a successful part-mating process, thus allowing the redundant robot arm to mimic the RCC supporting mechanism behavior in a programmable manner.


Author(s):  
Yisoo Lee ◽  
Nikos Tsagarakis ◽  
Jinoh Lee

AbstractThis paper analyzes operational space dynamics for redundant robots with un-actuated joints and reveals their highly nonlinear dynamic impacts on operational space control (OSC) tasks. Unlike conventional OSC approaches that partly address the under-actuated system by introducing rigid grasping or contact constraints, we deal with the problem even without such physical constraints which have been overlooked, yet it includes a wide range of applications such as free-floating robots and manipulators with passive joints or unwanted actuation failure. In addition, as an intuitive application example of the drawn result, an OSC is formulated as an optimization problem to alleviate the dynamics disturbance stemmed from the un-actuated joints and to satisfy other inequality constraints. The dynamic analysis and the proposed control method are verified by a number of numerical simulations as well as physical experiments with a 7-degrees-of-freedom robotic arm. In particular, we consider joint actuation failure scenarios that can be occurred at certain joints of a torque-controlled robot and practical case studies are performed with an actual redundant robot arm.


2019 ◽  
Vol 9 (10) ◽  
pp. 2070
Author(s):  
Hongxing Wei ◽  
Kaichao Li ◽  
Dong Xu ◽  
Wenshuai Tan

In single incision laparoscopic surgery (SILS), because the laparoscope and other surgical instruments share the same incision, the interferences between them constrain the dexterity of surgical instruments and affect the field of views of the laparoscope. Inspired by the structure of the spherical motor and the driving method of an intraocular micro robot, a fully inserted laparoscopic robot system is proposed, which consists of an inner laparoscopic robot and external driving device. The position and orientation control of the inner laparoscopic robot are controlled by a magnetic field generated by the driving device outside the abdominal wall. The instrumental interferences can be alleviated and better visual feedback can be obtained by keeping the laparoscopic robot away from the surgical incision. To verify the feasibility of the proposed structure and explore its control method, a prototype system is designed and fabricated. The electromagnetism model and the mechanical model of the laparoscopic robot system are established. Finally, the translational, rotational, and deflection motion of the laparoscopic robot are demonstrated in practical experiment, and the accuracy of deflection motion of the laparoscopic robot is verified in open-loop condition.


2017 ◽  
Vol 40 (7) ◽  
pp. 2227-2239 ◽  
Author(s):  
Haoping Wang ◽  
Qiankun Qu ◽  
Yang Tian

In this paper, a nonlinear observer based sliding mode control (NOSMC) approach for air-path and a model-based observer for oxygen concentration in the diesel engine equipped with a variable geometry turbocharger and exhaust gas recirculation is introduced. We propose a less conservative observer design technique for Lipschitz nonlinear systems using Ricatti equations. The observer gains are obtained by solving the linear matrix inequality (LMI). Then a robust nonlinear control method, sliding mode control is applied for the states of intake and exhaust manifold pressure and compressor mass flow rate for the sake of the minimization of emissions. The proposed NOSMC controller is applied on a mean value model of turbocharged diesel engine. Besides this, a model-based observer is developed to estimate the oxygen concentration in the intake and exhaust manifolds owing to its significance in reducing emissions of diesel engines. The validation and efficiency of the proposed method are demonstrated by AMESim and Matlab/Simulink co-simulation results.


Sign in / Sign up

Export Citation Format

Share Document