AC machine torque and stator flux estimation using a neural network based on the steady-state 2D field model

Author(s):  
L.M. Grzesiak ◽  
J. Skoczylas
1992 ◽  
Vol 26 (9-11) ◽  
pp. 2461-2464 ◽  
Author(s):  
R. D. Tyagi ◽  
Y. G. Du

A steady-statemathematical model of an activated sludgeprocess with a secondary settler was developed. With a limited number of training data samples obtained from the simulation at steady state, a feedforward neural network was established which exhibits an excellent capability for the operational prediction and determination.


2007 ◽  
Author(s):  
Victor P.B. Aguiar ◽  
Ricardo S. The Pontes ◽  
Arthur P.S. Braga ◽  
Jose Sergio de Aguiar

2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Tahmineh Adili ◽  
Zohreh Rostamnezhad ◽  
Ali Chaibakhsh ◽  
Ali Jamali

Burner failures are common abnormal conditions associated with industrial fired heaters. Preventing from economic loss and major equipment damages can be attained by compensating the lost heat due to burners’ failures, which can be possible by defining appropriate setpoints to rearrange the firing rates for healthy burners. In this study, artificial neural network models were developed for estimating the appropriate setpoints for the combustion control system to recover an industrial fired-heater furnace from abnormal conditions. For this purpose, based on an accurate high-order mathematical model, constrained nonlinear optimization problems were solved using the genetic algorithm. For different failure scenarios, the best possible excess firing rates for healthy burners to recover the furnace from abnormal conditions were obtained and data were recorded for training and testing stages. The performances of the developed neural steady-state models were evaluated through simulation experiments. The obtained results indicated the feasibility of the proposed technique to deal with the failures in the combustion system.


2014 ◽  
Vol 49 (10) ◽  
pp. 1469-1478 ◽  
Author(s):  
Tuan-Anh Nguyen ◽  
Shiro Yoshikawa ◽  
Shinichi Ookawara

Sign in / Sign up

Export Citation Format

Share Document