The Impact of Video Transcoding Parameters on Event Detection for Surveillance Systems

Author(s):  
Emmanouil Kafetzakis ◽  
Christos Xilouris ◽  
Michail Alexandros Kourtis ◽  
Marcos Nieto ◽  
Iveel Jargalsaikhan ◽  
...  
2020 ◽  
Vol 11 (SPL1) ◽  
pp. 1026-1033
Author(s):  
Nivedha Valliammai Mahalingam ◽  
Abilasha R ◽  
Kavitha S

Enormous successes have been obtained against the control of major epidemic diseases, such as SARS, MERS, Ebola, Swine Flu in the past. Dynamic interplay of biological, socio-cultural and ecological factors, together with novel aspects of human-animal interphase, pose additional challenges with respect to the emergence of infectious diseases. The important challenges faced in the control and prevention of emerging and re-emerging infectious diseases range from understanding the impact of factors that are necessary for the emergence, to development of strengthened surveillance systems that can mitigate human suffering and death. The aim of the current study is to assess the awareness of symptomatic differences between viral diseases like COVID-19, SARS, Swine flu and common cold among dental students that support the prevention of emergence or re-emergence. Cross-sectional type of study conducted among the undergraduate students comprising 100 Subjects. A questionnaire comprising 15 questions in total were framed, and responses were collected in Google forms in SPSS Software statistical analysis. The study has concluded that dental students have an awareness of the symptomatic differences between infectious viral disease. The study concluded that the awareness of symptomatic differences between viral diseases like COVID-19, SARS, Swine flu, Common cold is good among the dental students who would pave the way for early diagnosis and avoid spreading of such diseases. A further awareness can be created by regular webinars, seminars and brainstorming sessions among these healthcare professionals.


2020 ◽  
Vol 4 (3) ◽  
pp. 20 ◽  
Author(s):  
Giuseppe Ciaburro

Parking is a crucial element in urban mobility management. The availability of parking areas makes it easier to use a service, determining its success. Proper parking management allows economic operators located nearby to increase their business revenue. Underground parking areas during off-peak hours are uncrowded places, where user safety is guaranteed by company overseers. Due to the large size, ensuring adequate surveillance would require many operators to increase the costs of parking fees. To reduce costs, video surveillance systems are used, in which an operator monitors many areas. However, some activities are beyond the control of this technology. In this work, a procedure to identify sound events in an underground garage is developed. The aim of the work is to detect sounds identifying dangerous situations and to activate an automatic alert that draws the attention of surveillance in that area. To do this, the sounds of a parking sector were detected with the use of sound sensors. These sounds were analyzed by a sound detector based on convolutional neural networks. The procedure returned high accuracy in identifying a car crash in an underground parking area.


2021 ◽  
Vol 4 ◽  
Author(s):  
Vibhushinie Bentotahewa ◽  
Chaminda Hewage ◽  
Jason Williams

The growing dependency on digital technologies is becoming a way of life, and at the same time, the collection of data using them for surveillance operations has raised concerns. Notably, some countries use digital surveillance technologies for tracking and monitoring individuals and populations to prevent the transmission of the new coronavirus. The technology has the capacity to contribute towards tackling the pandemic effectively, but the success also comes at the expense of privacy rights. The crucial point to make is regardless of who uses and which mechanism, in one way another will infringe personal privacy. Therefore, when considering the use of technologies to combat the pandemic, the focus should also be on the impact of facial recognition cameras, police surveillance drones, and other digital surveillance devices on the privacy rights of those under surveillance. The GDPR was established to ensure that information could be shared without causing any infringement on personal data and businesses; therefore, in generating Big Data, it is important to ensure that the information is securely collected, processed, transmitted, stored, and accessed in accordance with established rules. This paper focuses on Big Data challenges associated with surveillance methods used within the COVID-19 parameters. The aim of this research is to propose practical solutions to Big Data challenges associated with COVID-19 pandemic surveillance approaches. To that end, the researcher will identify the surveillance measures being used by countries in different regions, the sensitivity of generated data, and the issues associated with the collection of large volumes of data and finally propose feasible solutions to protect the privacy rights of the people, during the post-COVID-19 era.


Author(s):  
Jon Hael Simon Brenas ◽  
Mohammad S. Al-Manir ◽  
Kate Zinszer ◽  
Christopher J. Baker ◽  
Arash Shaban-Nejad

ObjectiveMalaria is one of the top causes of death in Africa and some other regions in the world. Data driven surveillance activities are essential for enabling the timely interventions to alleviate the impact of the disease and eventually eliminate malaria. Improving the interoperability of data sources through the use of shared semantics is a key consideration when designing surveillance systems, which must be robust in the face of dynamic changes to one or more components of a distributed infrastructure. Here we introduce a semantic framework to improve interoperability of malaria surveillance systems (SIEMA).IntroductionIn 2015, there were 212 million new cases of malaria, and about 429,000 malaria death, worldwide. African countries accounted for almost 90% of global cases of malaria and 92% of malaria deaths. Currently, malaria data are scattered across different countries, laboratories, and organizations in different heterogeneous data formats and repositories. The diversity of access methodologies makes it difficult to retrieve relevant data in a timely manner. Moreover, lack of rich metadata limits the reusability of data and its integration. The current process of discovering, accessing and reusing the data is inefficient and error-prone profoundly hindering surveillance efforts.As our knowledge about malaria and appropriate preventive measures becomes more comprehensive malaria data management systems, data collection standards, and data stewardship are certain to change regularly. Collectively these changes will make it more difficult to perform accurate data analytics or achieve reliable estimates of important metrics, such as infection rates. Consequently, there is a critical need to rapidly re-assess the integrity of data and knowledge infrastructures that experts depend on to support their surveillance tasks.MethodsIn order to address the challenge of heterogeneity of malaria data sources we recruit domain specific ontologies in the field (e.g. IDOMAL (1)) that define a shared lexicon of concepts and relations. These ontologies are expressed in the standard Web Ontology Language (OWL).To over come challenges in accessing distributed data resources we have adopted the Semantic Automatic Discovery & Integration framework (SADI) (2) to ensure interoperability. SADI provides a way to describe services that provide access to data, detailing inputs and outputs of services and a functional description. Existing ontology terms are used when building SADI Service descriptions. The services can be discovered by querying a registry and combined into complex workflows. Users can issue SPARQL syntax to a query engine which can plan complex workflows to fetch actual data, without having to know how target data is structured or where it is located.In order to tackle changes in target data sources, the ontologies or the service definitions, we create a Dashboard (3) that can report any changes. The Dashboard reuses some existing tools to perform a series of checks. These tools compare versions of ontologies and databases allowing the Dashboard to report these changes. Once a change has been identified, as series of recommendations can be made, e.g. services can be retired or updated so that data access can continue.ResultsWe used the Mosquito Insecticide Resistance Ontology (MIRO) (5) to define the common lexicon for our data sources and queries. The sources we created are CSV files that use the IRbase (4) schema. With the data defined using we specified several SPARQL queries and the SADI services needed to answer them. These services were designed to enabled access to the data separated in different files using different formats. In order to showcase the capabilities of our Dashboard, we also modified parts of the service definitions, of the ontology and of the data sources. This allowed us to test our change detection capabilities. Once changes where detected, we manually updated the services to comply with a revised ontology and data sources and checked that the changes we proposed where yielding services that gave the right answers. In the future, we plan to make the updating of the services automatic.ConclusionsBeing able to make the relevant information accessible to a surveillance expert in a seamless way is critical in tackling and ultimately curing malaria. In order to achieve this, we used existing ontologies and semantic web services to increase the interoperability of the various sources. The data as well as the ontologies being likely to change frequently, we also designed a tool allowing us to detect and identify the changes and to update the services so that the whole surveillance systems becomes more resilient.References1. P. Topalis, E. Mitraka, V Dritsou, E. Dialynas and C. Louis, “IDOMAL: the malaria ontology revisited” in Journal of Biomedical Semantics, vol. 4, no. 1, p. 16, Sep 2013.2. M. D. Wilkinson, B. Vandervalk and L. McCarthy, “The Semantic Automated Discovery and Integration (SADI) web service design-pattern, API and reference implementation” in Journal of Biomedical Semantics, vol. 2, no. 1, p. 8, 2011.3. J.H. Brenas, M.S. Al-Manir, C.J.O. Baker and A. Shaban-Nejad, “Change management dashboard for the SIEMA global surveillance infrastructure”, in International Semantic Web Conference, 20174. E. Dialynas, P. Topalis, J. Vontas and C. Louis, "MIRO and IRbase: IT Tools for the Epidemiological Monitoring of Insecticide Resistance in Mosquito Disease Vectors", in PLOS Neglected Tropical Diseases 2009


2020 ◽  
Vol 5 (1) ◽  
pp. 1-14
Author(s):  
Yasmeen Ali Ameen ◽  
◽  
Khaled Bahnasy ◽  
Adel Elmahdy ◽  
◽  
...  

Background: Early event detection, monitor, and response can significantly decrease the impact of disasters. Lately, the usage of social media for detecting events has displayed hopeful results. Objectives: for event detection and mapping; the tweets will locate and monitor them on a map. This new approach uses grouped geoparsing then scoring for each tweet based on three spatial indicators. Method/Approach: Our approach uses a geoparsing technique to match a location in tweets to geographic locations of multiple-events tweets in Egypt country, administrative subdivision. Thus, additional geographic information acquired from the tweet itself to detect the actual locations that the user mentioned in the tweet. Results: The approach was developed from a large pool of tweets related to various crisis events over one year. Only all (very specific) tweets that were plotted on a crisis map to monitor these events. The tweets were analyzed through predefined geo-graphical displays, message content filters (damage, casualties). Conclusion: A method was implemented to predict the effective start of any crisis event and an inequity condition is applied to determine the end of the event. Results indicate that our automated filtering of information provides valuable information for operational response and crisis communication


Author(s):  
Jacob B. Aguilar ◽  
Jeremy Samuel Faust ◽  
Lauren M. Westafer ◽  
Juan B. Gutierrez

Coronavirus disease 2019 (COVID-19) is a novel human respiratory disease caused by the SARS-CoV-2 virus. Asymptomatic carriers of the virus display no clinical symptoms but are known to be contagious. Recent evidence reveals that this sub-population, as well as persons with mild disease, are a major contributor in the propagation of COVID-19. The asymptomatic sub-population frequently escapes detection by public health surveillance systems. Because of this, the currently accepted estimates of the basic reproduction number (ℛ0) of the disease are inaccurate. It is unlikely that a pathogen can blanket the planet in three months with an ℛ0 in the vicinity of 3, as reported in the literature (1–6). In this manuscript, we present a mathematical model taking into account asymptomatic carriers. Our results indicate that an initial value of the effective reproduction number could range from 5.5 to 25.4, with a point estimate of 15.4, assuming mean parameters. The first three weeks of the model exhibit exponential growth, which is in agreement with average case data collected from thirteen countries with universal health care and robust communicable disease surveillance systems; the average rate of growth in the number of reported cases is 23.3% per day during this period.


2018 ◽  
Vol 146 (16) ◽  
pp. 2059-2065 ◽  
Author(s):  
A. R. R. Freitas ◽  
P. M. Alarcón-Elbal ◽  
M. R. Donalisio

AbstractIn some chikungunya epidemics, deaths are not completely captured by traditional surveillance systems, which record case and death reports. We evaluated excess deaths associated with the 2014 chikungunya virus (CHIKV) epidemic in Guadeloupe and Martinique, Antilles. Population (784 097 inhabitants) and mortality data, estimated by sex and age, were accessed from the Institut National de la Statistique et des Études Économiques in France. Epidemiological data, cases, hospitalisations and deaths on CHIKV were obtained from the official epidemiological reports of the Cellule de Institut de Veille Sanitaire in France. Excess deaths were calculated as the difference between the expected and observed deaths for all age groups for each month in 2014 and 2015, considering the upper limit of 99% confidence interval. The Pearson correlation coefficient showed a strong correlation between monthly excess deaths and reported cases of chikungunya (R= 0.81,p< 0.005) and with a 1-month lag (R= 0.87,p< 0.001); and a strong correlation was also observed between monthly rates of hospitalisation for CHIKV and excess deaths with a delay of 1 month (R= 0.87,p< 0.0005). The peak of the epidemic occurred in the month with the highest mortality, returning to normal soon after the end of the CHIKV epidemic. There were excess deaths in almost all age groups, and excess mortality rate was higher among the elderly but was similar between male and female individuals. The overall mortality estimated in the current study (639 deaths) was about four times greater than that obtained through death declarations (160 deaths). Although the aetiological diagnosis of all deaths associated with CHIKV infection is not always possible, already well-known statistical tools can contribute to the evaluation of the impact of CHIKV on mortality and morbidity in the different age groups.


Author(s):  
Jhih-Yuan Hwang ◽  
Wei-Po Lee

The current surveillance systems must identify the continuous human behaviors to detect various events from video streams. To enhance the performance of event recognition, in this chapter, we propose a distributed low-cost smart cameras system, together with a machine learning technique to detect abnormal events through analyzing the sequential behaviors of a group of people. Our system mainly includes a simple but efficient strategy to organize the behavior sequence, a new indirect encoding scheme to represent a group of people with relatively few features, and a multi-camera collaboration strategy to perform collective decision making for event recognition. Experiments have been conducted and the results confirm the reliability and stability of the proposed system in event recognition.


2007 ◽  
Vol 122 (5) ◽  
pp. 644-656 ◽  
Author(s):  
Denis Nash ◽  
Evie Andreopoulos ◽  
Deborah Horowitz ◽  
Nancy Sohler ◽  
David Vlahov

Objective. We assessed the impact of differing laboratory reporting scenarios on the completeness of estimates of people living with human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) (PLWHA) in the U.S., which are used to guide allocation of federal Ryan White funds. Methods. We conducted a four-year simulation study using clinical and laboratory data on 1,337 HIV-positive women, including 477 (36%) who did not have AIDS at baseline. We estimated the completeness of HIV (non-AIDS) case ascertainment for three laboratory reporting scenarios: CD4<200 cells/μL and detectable viral load (Scenario A); CD4<500 cells/μL and no viral load reporting (Scenario B); and CD4<500 cells/μL and detectable viral load (Scenario C). Results. Each scenario resulted in an increasing proportion of HIV (non-AIDS) cases being ascertained over time, with Scenario C yielding the highest by Year 4 (Year 1: 69.0%, Year 4: 88.1%), followed by Scenario A (Year 1: 63.3%, Year 4: 84.5%), and Scenario B (Year 1: 43.0%, Year 4: 67.7%). Overall completeness of PLWHA ascertainment after four years was highest for Scenario C (95.8%), followed by Scenario A (94.5%), and Scenario B (88.5%). Conclusions. Differences in laboratory reporting regulations lead to substantial variations in the completeness of PLWHA estimates, and may penalize jurisdictions that are most successful at treating HIV/AIDS patients or those with weak or incomplete HIV/AIDS surveillance systems.


Sign in / Sign up

Export Citation Format

Share Document