A fast-settling CMOS op amp with 90 dB DC-gain and 116 MHz unity-gain frequency

Author(s):  
K. Bult ◽  
G. Geelen
Keyword(s):  
Op Amp ◽  
Dc Gain ◽  
2011 ◽  
Vol 70 (3) ◽  
pp. 283-292 ◽  
Author(s):  
Ali Dadashi ◽  
Shamin Sadrafshari ◽  
Khayrollah Hadidi ◽  
Abdollah Khoei
Keyword(s):  
Op Amp ◽  
Dc Gain ◽  

1990 ◽  
Vol 25 (6) ◽  
pp. 1379-1384 ◽  
Author(s):  
K. Bult ◽  
G.J.G.M. Geelen
Keyword(s):  
Op Amp ◽  
Dc Gain ◽  

Author(s):  
Priti Gupta ◽  
Sanjay Kumar Jana

This paper deals with the designing of low-power transconductance–capacitance-based loop filter. The folded cascode-based operational transconductance amplifier (OTA) is designed in this paper with the help of quasi-floating bulk MOSFET that achieved the DC gain of 88.61[Formula: see text]dB, unity gain frequency of 97.86[Formula: see text]MHz and power consumption of 430.62[Formula: see text][Formula: see text]W. The proposed OTA is compared with the exiting OTA structure which showed 19.50% increase in DC gain and 15.11% reduction in power consumption. Further, the proposed OTA is used for the designing of transconductance–capacitance-based loop filter that has been operated at [Formula: see text]3[Formula: see text]dB cut-off frequency of 30.12[Formula: see text]MHz with the power consumption of 860.90[Formula: see text][Formula: see text]W at the supply voltage of [Formula: see text][Formula: see text]V. The transistor-level simulation has been done in 0.18[Formula: see text][Formula: see text]m CMOS process.


2020 ◽  
Vol 37 (4) ◽  
pp. 205-213
Author(s):  
Norhamizah Idros ◽  
Zulfiqar Ali Abdul Aziz ◽  
Jagadheswaran Rajendran

Purpose The purpose of this paper is to demonstrate the acceptable performance by using the limited input range towards lower open-loop DC gain operational amplifier (op-amp) of an 8-bit pipelined analog-to-digital converter (ADC) for mobile communication application. Design/methodology/approach An op-amp with folded cascode configuration is designed to provide the maximum open-loop DC gain without any gain-boosting technique. The impact of low open-loop DC gain is observed and analysed through the results of pre-, post-layout simulations and measurement of the ADC. The fabrication process technology used is Silterra 0.18-µm CMOS process. The silicon area by the ADC is 1.08 mm2. Findings Measured results show the differential non-linearity (DNL) error, integral non-linearity (INL) error, signal-to-noise ratio (SNR) and spurious-free dynamic range (SFDR) are within −0.2 to +0.2 LSB, −0.55 LSB for 0.4 Vpp input range, 22 and 27 dB, respectively, with 2 MHz input signal at the rate of 64 MS/s. The static power consumption is 40 mW with a supply voltage of 1.8 V. Originality/value The experimental results of ADC showed that by limiting the input range to ±0.2 V, this ADC is able to give a good reasonable performance. Open-loop DC gain of op-amp plays a critical role in ADC performance. Low open-loop DC gain results in stage-gain error of residue amplifier and, thus, leads to nonlinearity of output code. Nevertheless, lowering the input range enhances the linearity to ±0.2 LSB.


2021 ◽  
Vol 11 (4) ◽  
pp. 37
Author(s):  
Andrea Ballo ◽  
Salvatore Pennisi ◽  
Giuseppe Scotti

A two-stage CMOS transconductance amplifier based on the inverter topology, suitable for very low supply voltages and exhibiting rail-to-rail output capability is presented. The solution consists of the cascade of a noninverting and an inverting stage, both characterized by having only two complementary transistors between the supply rails. The amplifier provides class-AB operation with quiescent current control obtained through an auxiliary loop that utilizes the MOSFETs body terminals. Simulation results, referring to a commercial 28 nm bulk technology, show that the quiescent current of the amplifier can be controlled quite effectively, even adopting a supply voltage as low as 0.5 V. The designed solution consumes around 500 nA of quiescent current in typical conditions and provides a DC gain of around 51 dB, with a unity gain frequency of 1 MHz and phase margin of 70 degrees, for a parallel load of 1 pF and 1.5 MΩ. Settling time at 1% is 6.6 μs, and white noise is 125 nV/Hz.


Sign in / Sign up

Export Citation Format

Share Document