Classification of microarray data using SVM mapreduce

Author(s):  
X. R. Jenifer ◽  
R. Lawrance
Keyword(s):  
2018 ◽  
Vol 32 (7) ◽  
pp. 2397-2404
Author(s):  
Mausami Mondal ◽  
Rahul Semwal ◽  
Utkarsh Raj ◽  
Imlimaong Aier ◽  
Pritish Kumar Varadwaj
Keyword(s):  

2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Nicoletta Dessì ◽  
Barbara Pes

The classification of cancers from gene expression profiles is a challenging research area in bioinformatics since the high dimensionality of microarray data results in irrelevant and redundant information that affects the performance of classification. This paper proposes using an evolutionary algorithm to select relevant gene subsets in order to further use them for the classification task. This is achieved by combining valuable results from different feature ranking methods into feature pools whose dimensionality is reduced by a wrapper approach involving a genetic algorithm and SVM classifier. Specifically, the GA explores the space defined by each feature pool looking for solutions that balance the size of the feature subsets and their classification accuracy. Experiments demonstrate that the proposed method provide good results in comparison to different state of art methods for the classification of microarray data.


2020 ◽  
pp. 707-725
Author(s):  
Sujata Dash

Efficient classification and feature extraction techniques pave an effective way for diagnosing cancers from microarray datasets. It has been observed that the conventional classification techniques have major limitations in discriminating the genes accurately. However, such kind of problems can be addressed by an ensemble technique to a great extent. In this paper, a hybrid RotBagg ensemble framework has been proposed to address the problem specified above. This technique is an integration of Rotation Forest and Bagging ensemble which in turn preserves the basic characteristics of ensemble architecture i.e., diversity and accuracy. Three different feature selection techniques are employed to select subsets of genes to improve the effectiveness and generalization of the RotBagg ensemble. The efficiency is validated through five microarray datasets and also compared with the results of base learners. The experimental results show that the correlation based FRFR with PCA-based RotBagg ensemble form a highly efficient classification model.


Sign in / Sign up

Export Citation Format

Share Document