scholarly journals A Novel Multi-Stage Training Approach for Human Activity Recognition From Multimodal Wearable Sensor Data Using Deep Neural Network

2021 ◽  
Vol 21 (2) ◽  
pp. 1715-1726
Author(s):  
Tanvir Mahmud ◽  
A. Q. M. Sazzad Sayyed ◽  
Shaikh Anowarul Fattah ◽  
Sun-Yuan Kung
Proceedings ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 15
Author(s):  
Manuel Gil-Martín ◽  
Marcos Sánchez-Hernández ◽  
Rubén San-Segundo

Deep learning techniques are being widely applied to Human Activity Recognition (HAR). This paper describes the implementation and evaluation of a HAR system for daily life activities using the accelerometer of an iPhone 6S. This system is based on a deep neural network including convolutional layers for feature extraction from accelerations and fully-connected layers for classification. Different transformations have been applied to the acceleration signals in order to find the appropriate input data to the deep neural network. This study has used acceleration recordings from the MotionSense dataset, where 24 subjects performed 6 activities: walking downstairs, walking upstairs, sitting, standing, walking and jogging. The evaluation has been performed using a subject-wise cross-validation: recordings from the same subject do not appear in training and testing sets at the same time. The proposed system has obtained a 9% improvement in accuracy compared to the baseline system based on Support Vector Machines. The best results have been obtained using raw data as input to a deep neural network composed of two convolutional and two max-pooling layers with decreasing kernel sizes. Results suggest that using the module of the Fourier transform as inputs provides better results when classifying only between dynamic activities.


Sign in / Sign up

Export Citation Format

Share Document