A planar dual fed UWB monopole antenna with polarization diversity for cognitive radio sensing

Author(s):  
Tamer Aboufoul ◽  
Akram Alomainy ◽  
Clive Parini
2021 ◽  
Vol 36 (4) ◽  
pp. 419-424
Author(s):  
Ahmed Ibrahim ◽  
Wael Ali ◽  
Hassan Aboushady

A spectrum-sensing algorithm is used to detect the available and the occupied frequency bands. The wideband antenna design approach is used for a microstrip fed monopole antenna that can be used for various wireless technologies such as GSM, UMTS, LTE, and WiFi operating at different frequencies from 1.25 to 3 GHz. The antenna is constructed from two copper layers of rectangular radiator and a partial ground plane. These layers are printed on an RO4003 substrate with dimensions 60 x 80 mm2. The antenna is experimentally fabricated to verify the simulation predictions and good matching between simulated and measured results is achieved. The wide-band antenna is tested by connecting it to the receiver of the Blade-RF Software Defined Radio (SDR) platform. A matlab script is then used to control the SDR board and to perform Spectrum Sensing for Cognitive Radio Applications.


2013 ◽  
Vol 56 (1) ◽  
pp. 145-152 ◽  
Author(s):  
Yunfei Cao ◽  
S. W. Cheung ◽  
X. L. Sun ◽  
T. I. Yuk

Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
D. Srikar ◽  
Sundru Anuradha

Purpose This study aims to propose a two-element multi-input-multi-output (MIMO) antenna for cognitive radio MIMO applications to avoid the complexities involved in reconfigurable antennas and improve the spectrum utilization efficiency. Design/methodology/approach The proposed MIMO antenna system comprises a wideband antenna that operates at 2 GHz–12 GHz for sensing the spectrum and four pairs of antennas for communication, which are single and dual-band antennas. Each pair of antennas meant for communication consists of two similar antennas. Moreover, the antennas meant for communication cover 93% of the bandwidth of the sensing antenna. Findings The first pair of antennas accessible at ports P2 and P6 and the second pair of antennas accessible at ports P4 and P8, which are dual-band antennas, operate at 3.05 GHz–3.85 GHz, 5.8 GHz–8 GHz and 2.05 GHz–2.55 GHz, 4.7 GHz–6.1 GHz, respectively. While the third pair of antennas accessible at ports P3 and P7 and the fourth pair of antennas accessible at ports P5 and P9 are single-band antennas and operate at 3.85 GHz–4.7 GHz and 8 GHz–11 GHz, respectively. Minimum isolations of 20 dB and 15 dB are attained between every two similar antennas for communication and between the sensing antenna and the antennas meant for communication, respectively. The correctness of the proposed antenna is verified with a fine match between the results obtained from simulations and measurements. Originality/value The proposed MIMO antenna possesses salient features, such as polarization diversity and performing a maximum of four communication tasks when all the white spaces are detected.


2019 ◽  
Vol 11 (7) ◽  
pp. 694-702
Author(s):  
Murli Manohar ◽  
Rakhesh Singh Kshetrimayum ◽  
Anup Kumar Gogoi

AbstractA low profile super-wideband polarization diversity printed monopole antenna with dual band-notched characteristics is presented the first time. The designed antenna comprises two arched shaped radiating elements with two triangular tapered microstrip feed lines (TTMFL) and two arched shaped partial ground planes, which covers an enormously wide impedance bandwidth (BW) from 1.2 to 25 GHz (ratio BW of 20.8:3) for reflection coefficient |S11| < −10 dB. To ensure the high port isolation (better than − 30 dB) between two feeding ports over the whole bands, two analogous antennas have been kept perpendicular to each other at a distance of 1 mm. In addition, the dual band-notched performance in wireless local area network (5–6 GHz) and X-band (7.2–8.5 GHz) is generated by employing a pair of open-circuited stubs (L-shaped stub and horizontal stub) to the TTMFL. Envelop correlation coefficient has been computed to study the polarization diversity performance. Finally, the proposed antenna was fabricated and tested successfully. Measured results indicate that the proposed antenna is an appropriate candidate for the polarization diversity applications. The proposed antenna has a compact size of 40 × 70 × 0.787 mm3, high isolation, and occupies a small space compared with the existing antennas.


Sign in / Sign up

Export Citation Format

Share Document