Experimental tests on a near-field to far-field transformation technique using a nonconventional plane-rectangular scanning

Author(s):  
Francesco D'Agostino ◽  
Flaminio Ferrara ◽  
Claudio Gennarelli ◽  
Rocco Guerriero ◽  
Massimo Migliozzi ◽  
...  
2009 ◽  
Vol 51 (4) ◽  
pp. 134-141 ◽  
Author(s):  
F. D'Agosti ◽  
F. Ferrara ◽  
J. A. Fordham ◽  
C. Gennarelli ◽  
R. Guerriero ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Francesco D’Agostino ◽  
Flaminio Ferrara ◽  
Claudio Gennarelli ◽  
Rocco Guerriero ◽  
Massimo Migliozzi

A direct near-field-far-field transformation with helicoidal scanning is developed. It is based on the nonredundant sampling representation of electromagnetic fields and uses a spherical antenna modelling to determine the number of helix turns. Moreover, the number of voltage samples on each of them is fixed by the maximum transverse dimension of the antenna, both to simplify the mechanical scanning and to reduce the computational effort. This technique allows the evaluation of the antenna far field directly from a minimum set of near-field data without interpolating them. Although the number of near-field data employed by the developed technique is slightly increased with respect to that required by rigorously applying the nonredundant sampling representation on the helix, it is still remarkably smaller than that needed by the standard near-field-far-field transformation with cylindrical scanning. The effectiveness of the technique is assessed by numerical and experimental results.


2018 ◽  
Vol 12 (5) ◽  
pp. 712-717 ◽  
Author(s):  
Francesco D'Agostino ◽  
Flaminio Ferrara ◽  
Claudio Gennarelli ◽  
Rocco Guerriero ◽  
Massimo Migliozzi

2019 ◽  
Vol 13 (1) ◽  
pp. 19-29 ◽  
Author(s):  
Francesco D’Agostino ◽  
Flaminio Ferrara ◽  
Claudio Gennarelli ◽  
Rocco Guerriero ◽  
Massimo Migliozzi

Background: The development of fast Near-Field (NF) measurement techniques allowing the precise determination of the Far-Field (FF) radiation features of an antenna is becoming more and more challenging nowadays. Objective: The goal of the article is the development of an NF To FF Transformation (NFTFFT) with spherical scan for offset mounted volumetric Antennas Under Tests (AUTs) requiring, unlike the classical technique, a reduced set of NF data, that is of the same amount as for the onset mounting case, thus making data gathering faster. In fact, the number of NF data needed by the standard approach may considerably increase in this case, since the size of the smallest sphere surrounding the AUT and centered at the center of the measurement sphere rises. Methods: This goal has been achieved by profitably exploiting the non-redundant sampling representation of electromagnetic field and assuming a volumetric AUT as contained in a sphere. An optimal sampling interpolation algorithm is then employed to precisely reconstruct the input NF data for the traditional spherical NFTFFT from the reduced set of the collected ones. Conclusion: The numerical simulations and experimental tests demonstrate the effectiveness of the developed approach accounting for an offset mounting of the AUT.


Sign in / Sign up

Export Citation Format

Share Document