Single-Layer Dual-Mode Microstrip Antenna With No Feeding Network for Pattern Diversity Application

2020 ◽  
Vol 19 (12) ◽  
pp. 2442-2446
Author(s):  
Hui Deng ◽  
Lei Zhu ◽  
Neng-Wu Liu ◽  
Zhong-Xun Liu
Author(s):  
Miguel Ferrando-Rocher ◽  
Jose Ignacio Herranz-Herruzo ◽  
Alejandro Valero-Nogueira ◽  
Mariano Baquero-Escudero

2019 ◽  
Vol 8 (3) ◽  
pp. 1-5 ◽  
Author(s):  
A. S. Boughrara ◽  
S. Benkouda ◽  
A. Bouraiou ◽  
T. Fortaki

In this paper, we present a rigorous full-wave analysis able to estimate exactly the resonant characteristics of stacked high Tc superconducting circular disk microstrip antenna. The superconducting patches are assumed to be embedded in a multilayered substrate containing isotropic and/or uniaxial anisotropic materials (the analysis is valid for an arbitrary number of layers). London’s equations and the two-fluid model of Gorter and Casimir are used in the calculation of the complex surface impedance of the superconducting circular disks. Numerical results are presented for a single layer structure as well as for two stacked circular disks fabricated on a double-layered substrate.


2020 ◽  
Vol 12 (9) ◽  
pp. 906-914
Author(s):  
O. Borazjani ◽  
M. Naser-Moghadasi ◽  
J. Rashed-Mohassel ◽  
R. A. Sadeghzadeh

AbstractTo prevent far-field radiation characteristics degradation while increasing bandwidth, an attempt has been made to design and fabricate a microstrip antenna. An electromagnetic band gap (EBG) structure, including a layer of a metallic ring on a layer of Rogers 4003C substrate, is used. For a better design, a patch antenna with and without the EBG substrate has been simulated. The results show that the bandwidth can be improved up to 1.6 GHz in X-band by adding the EBG substrate. Furthermore, using this structure, a dual-band antenna was obtained as well. Finally, to validate the simulation results, a comparison has been done between simulation data and experimental results which demonstrate good agreement.


2018 ◽  
Vol 66 (5) ◽  
pp. 2628-2633 ◽  
Author(s):  
Changjiang Deng ◽  
Xin Lv ◽  
Zhenghe Feng

Sign in / Sign up

Export Citation Format

Share Document