Comparison of Low Cost Printed Antennas Suitable for Optical Fiber Microcellular Radio Systems

Author(s):  
R.B. Waterhouse ◽  
D. Novak
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1516
Author(s):  
Lian Liu ◽  
Shijie Deng ◽  
Jie Zheng ◽  
Libo Yuan ◽  
Hongchang Deng ◽  
...  

An enhanced plastic optical fiber (POF)-based surface plasmon resonance (SPR) sensor is proposed by employing a double-sided polished structure. The sensor is fabricated by polishing two sides of the POF symmetrically along with the fiber axis, and a layer of Au film is deposited on each side of the polished region. The SPR can be excited on both polished surfaces with Au film coating, and the number of light reflections will be increased by using this structure. The simulation and experimental results show that the proposed sensor has an enhanced SPR effect. The visibility and full width at half maximum (FWHM) of spectrum can be improved for the high measured refractive index (RI). A sensitivity of 4284.8 nm/RIU is obtained for the double-sided POF-based SPR sensor when the measured liquid RI is 1.42. The proposed SPR sensor is easy fabrication and low cost, which can provide a larger measurement range and action area to the measured samples, and it has potential application prospects in the oil industry and biochemical sensing fields.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Chia-Chin Chiang ◽  
Jian-Cin Chao

An optical fiber solution-concentration sensor based on whispering gallery mode (WGM) is proposed in this paper. The WGM solution-concentration sensors were used to measure salt solutions, in which the concentrations ranged from 1% to 25% and the wavelength drifted from the left to the right. The experimental results showed an average sensitivity of approximately 0.372 nm/% and anR2linearity of 0.8835. The proposed WGM sensors are of low cost, feasible for mass production, and durable for solution-concentration sensing.


Author(s):  
RW Meggs ◽  
RJ Watson

Put simply, ‘spoofing’ is a means of controlling the reported position and time of a GNSS receiver. Spoofing has now been well demonstrated in the experimental context, but until a few years ago it was regarded as “…a bit like UFOs: much speculation, occasional alarms at suspected instances, but little real-world evidence of its existence” (Ref. 1). In the intervening years spoofing has transformed from a research laboratory into an emerging threat. In this paper we focus on radio-frequency attack as the primary method of spoofing. However there is also the possibility of cyber-attack on GNSS systems, in which there is interception and modification of computed position between the receiver and application. It had perhaps previously been considered that the technology and know-how “barrier to entry” to produce an effective spoofer was itself a significant deterrent. However, the commercial availability of inexpensive (sub £250) software defined radio systems, low-cost computing and open-source GNSS signal generator software has all but eliminated this barrier. This paper will consider various methods of spoofing, means of detecting spoofing through analysis of signal anomalies and also mitigation of spoofing at the physical layer via the antenna and signal processing and at the software application layer through the detection of anomalies.


1999 ◽  
Author(s):  
D. C. Inder ◽  
M. A. Buckley ◽  
Tonguy Liu ◽  
Gerard F. Fernando
Keyword(s):  
Low Cost ◽  

2012 ◽  
Vol 263-266 ◽  
pp. 1004-1007 ◽  
Author(s):  
Li Ying Liu ◽  
Yan Huang ◽  
Chun Yu Liu ◽  
Xin Ming Zhang ◽  
Jiu Ru Yang

Optical fiber Raman amplifier (OFRA) with wide and flat gain bandwidth has been widely applied in the fields of optical communication, sensing and measurement. However, the performance optimization is always one of the hot topics in the study of OFRA, because its output characteristics are hardly dependent to some key designing parameters. In this paper, to overcome the problems above, we adopt a spectrum analysis based method to study the output performance of an OFRA system with backward pumping. By simulating the operation of the OFRA system, its output characteristics are first showed easily, with the advantages of real time, low cost, and low complexity. Further, according to the numerical results obtained, the optimal parameters of an OFRA system are determinate, and the performance in terms of output power, signal noise ratio, and the level of gain flatness is improved and optimized obviously.


2018 ◽  
Vol 17 (11) ◽  
pp. 2051-2055 ◽  
Author(s):  
Shaker Alkaraki ◽  
Andre Sarker Andy ◽  
Yue Gao ◽  
Kin-Fai Tong ◽  
Zhinong Ying ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
A. Arifin ◽  
Nelly Agustina ◽  
Syamsir Dewang ◽  
Irfan Idris ◽  
Dahlang Tahir

This research discusses the polymer optical fiber sensor for respiratory measurements. The infrared LED that produces light will propagate along the polymer optical fiber which will be received by the phototransistor and the differential amplifier. The output voltage in the form of an analog signal will be converted to a digital signal by the Arduino Uno microcontroller and displayed on the computer. The polymer optical fiber sensor is installed on the corset using a variety of configuration (straight, sinusoidal, and spiral), placed in the abdomen, and a variety of positions (abdomen, chest, and back) using only a spiral configuration. While doing the inspiration, the stomach will be enlarged so that the optical fiber sensor will have strain. The strain will cause loss of power, the resulting light intensities received by the phototransistor are reduced, and the output voltage on the computer decreases. The result shows that the highest voltage amplitudes were in the spiral configuration placed in the abdominal position for slow respiration measurements with the highest range, sensitivity, and resolution which are 0.119 V, 0.238 V/s, and 0.004 s, respectively. The advantages of our work are emphasized on measurement system simplicity, low cost, easy fabrication, and handy operation and can be connected with the Arduino Uno microcontroller and computer.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2776
Author(s):  
José A. Borda-Hernández ◽  
Claudia M. Serpa-Imbett ◽  
Hugo E. Hernandez Figueroa

This research introduces a numerical design of an air-core vortex polymer optical fiber in cyclic transparent optical polymer (CYTOP) that propagates 32 orbital angular momentum (OAM) modes, i.e., it may support up to 64 stable OAM-states considering left- and right-handed circular polarizations. This fiber seeks to be an alternative to increase the capacity of short-range optical communication systems multiplexed by modes, in agreement with the high demand of low-cost, insensitive-to-bending and easy-to-handle fibers similar to others optical fibers fabricated in polymers. This novel fiber possesses unique characteristics: a diameter of 50 µm that would allow a high mechanical compatibility with commercially available polymer optical fibers, a difference of effective index between neighbor OAM modes of around 10−4 over a bandwidth from 1 to 1.6 µm, propagation losses of approximately 15 × 10−3 dB/m for all OAM modes, and a very low dispersion for OAM higher order modes (±l = 16) of up to +2.5 ps/km-nm compared with OAM lower order modes at a telecom wavelength of 1.3 µm, in which the CYTOP exhibits a minimal attenuation. The spectra of mutual coupling coefficients between modes are computed considering small bends of up to 3 cm of radius and slight ellipticity in the ring of up to 5%. Results show lower-charge weights for higher order OAM modes.


Sign in / Sign up

Export Citation Format

Share Document