Effect of externally applied electric field to a light - beam self - action in a lithium niobate waveguide

Author(s):  
E. Smimov ◽  
V. Shandarov
1972 ◽  
Vol 33 (C1) ◽  
pp. C1-63-C1-67 ◽  
Author(s):  
M. BERTOLOTTI ◽  
B. DAINO ◽  
P. Di PORTO ◽  
F. SCUDIERI ◽  
D. SETTE

2012 ◽  
Vol 15 (2-3) ◽  
pp. 127-139
Author(s):  
Tung Tran Anh ◽  
Laurent Berquez ◽  
Laurent Boudou ◽  
Juan Martinez-Vega ◽  
Alain Lacarnoy

2019 ◽  
Vol 9 (3) ◽  
pp. 344-352 ◽  
Author(s):  
L.I. Stefanovich ◽  
O.Y. Mazur ◽  
V.V. Sobolev

Introduction: Within the framework of the phenomenological theory of phase transitions of the second kind of Ginzburg-Landau, the kinetics of ordering of a rapidly quenched highly nonequilibrium domain structure is considered using the lithium tantalate and lithium niobate crystals as an example. Experimental: Using the statistical approach, evolution equations describing the formation of the domain structure under the influence of a high-frequency alternating electric field in the form of a standing wave were obtained. Numerical analysis has shown the possibility of forming thermodynamically stable mono- and polydomain structures. It turned out that the process of relaxation of the system to the state of thermodynamic equilibrium can proceed directly or with the formation of intermediate quasi-stationary polydomain asymmetric phases. Results: It is shown that the formation of Regular Domain Structures (RDS) is of a threshold character and occurs under the influence of an alternating electric field with an amplitude less than the critical value, whose value depends on the field frequency. The conditions for the formation of RDSs with a micrometer spatial scale were determined. Conclusion: As shown by numerical studies, the RDSs obtained retain their stability, i.e. do not disappear even after turning off the external electric field. Qualitative analysis using lithium niobate crystals as an example has shown the possibility of RDSs formation in high-frequency fields with small amplitude under resonance conditions


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Yannick Minet ◽  
Hans Zappe ◽  
Ingo Breunig ◽  
Karsten Buse

Whispering gallery resonators made out of lithium niobate allow for optical parametric oscillation and frequency comb generation employing the outstanding second-order nonlinear-optical properties of this material. An important knob to tune and control these processes is, e.g., the linear electro-optic effect, the Pockels effect via externally applied electric fields. Due to the shape of the resonators a precise prediction of the electric field strength that affects the optical mode is non-trivial. Here, we study the average strength of the electric field in z-direction in the region of the optical mode for different configurations and geometries of lithium niobate whispering gallery resonators with the help of the finite element method. We find that in some configurations almost 100% is present in the cavity compared to the ideal case of a cylindrical resonator. Even in the case of a few-mode resonator with a very thin rim we find a strength of 90%. Our results give useful design considerations for future arrangements that may benefit from the strong electro-optic effect in bulk whispering gallery resonators made out of lithium niobate.


2008 ◽  
Vol 75 (1) ◽  
Author(s):  
Q. Li ◽  
Y. H. Chen

A semi-permeable interface crack in infinite elastic dielectric/piezoelectric bimaterials under combined electric and mechanical loading is studied by using the Stroh complex variable theory. Attention is focused on the influence induced from the permittivity of the medium inside the crack gap on the near-tip singularity and on the energy release rate (ERR). Thirty five kinds of such bimaterials are considered, which are constructed by five kinds of elastic dielectrics and seven kinds of piezoelectrics, respectively. Numerical results for the interface crack tip singularities are calculated. We demonstrate that, whatever the dielectric phase is much softer or much harder than the piezoelectric phase, the structure of the singular field near the semi-permeable interface crack tip in such bimaterials always consists of the singularity r−1∕2 and a pair of oscillatory singularities r−1∕2±iε. Calculated values of the oscillatory index ε for the 35 kinds of bimaterials are presented in tables, which are always within the range between 0.046 and 0.088. Energy analyses for five kinds of such bimaterials constructed by PZT-4 and the five kinds of elastic dielectrics are studied in more detail under four different cases: (i) the crack is electrically conducting, (ii) the crack gap is filled with air/vacuum, (iii) the crack gap is filled with silicon oil, and (iv) the crack is electrically impermeable. Detailed comparisons on the variable tendencies of the crack tip ERR against the applied electric field are given under some practical electromechanical loading levels. We conclude that the different values of the permittivity have no influence on the crack tip singularity but have significant influences on the crack tip ERR. We also conclude that the previous investigations under the impermeable crack model are incorrect since the results of the ERR for the impermeable crack show significant discrepancies from those for the semi-permeable crack, whereas the previous investigations under the conducting crack model may be accepted in a tolerant way since the results of the ERR show very small discrepancies from those for the semi-permeable crack, especially when the crack gap is filled with silicon oil. In all cases under consideration the curves of the ERR for silicon oil are more likely tending to those for the conducting crack rather than to those for air or vacuum. Finally, we conclude that the variable tendencies of the ERR against the applied electric field have an interesting load-dependent feature when the applied mechanical loading increases. This feature is due to the nonlinear relation between the normal electric displacement component and the applied electromechanical loadings from a quadratic equation.


The Analyst ◽  
2020 ◽  
Vol 145 (6) ◽  
pp. 2412-2419 ◽  
Author(s):  
Rachel N. Deraney ◽  
Lindsay Schneider ◽  
Anubhav Tripathi

NA extraction and purification utilitzing a microfluidic chip with applied electric field to induce electroosmotic flow opposite the magnetic NA-bound bead mix.


2020 ◽  
Vol 10 (6) ◽  
pp. 780-787
Author(s):  
Hongyue Gao ◽  
Suna Li ◽  
Jicheng Liu ◽  
Wen Zhou ◽  
Fan Xu ◽  
...  

In this paper, we studied the holographic properties of liquid crystal (LC) thin film doped with carbon dots (CDs) which can be used as real-time holographic display screen. The maximum value of diffraction efficiency can reach up to 30% by using a low applied electric field 0.2 V/μm. Holograms in the LC film can be dynamically formed and self-erased. The hologram build-up time and the hologram self-erasure time in the material is fast enough to realize video refresh rate. In addition, the forming process of hologram was studied. The holographic diffraction efficiency was measured depending on the intensity of recording light, applied electric field, the intensity of readout light, and readout light polarization direction. Triple enhancement of the diffraction efficiency value by the modulation of voltage under the condition of low recording energy is presented. Therefore, we develop an easy way to obtain real-time dynamic holographic red, green and blue displays with high diffraction efficiency, which allow the LC film doped with CDs to be used as a holographic 3D display screen.


Sign in / Sign up

Export Citation Format

Share Document